Место образования серого серпа во многом, если не целиком определяется внешними к яйцу факторами, уже после оплодотворения. Одним из них может служить место вхождения сперматозоида — серый серп образуется с противоположной стороны. Однако этот фактор не единственный, а у большинства видов он, по-видимому, совсем не играет роли.
Если яйцо амфибий (или осетровых рыб) в первое время после оплодотворения наклонить набок и дать ему снова подняться анимальным полюсом вверх, то серый серп образуется в плоскости поворота на той стороне, которая была внизу. Эту манипуляцию можно повторить несколько раз: серый серп образуется в плоскости последнего поворота. Ho через 30–40 мин положение серого серпа детерминируется и изменить его уже нельзя.
Механизм ооплазматической сегрегации у других видов животных практически не изучен. Можно, по-видимому, утверждать, что в оогенезе, например, асцидий образуются различные вещества и структуры, которые до оплодотворения распределены в яйце более или менее равномерно. Ho после оплодотворения эти вещества каким-то образом концентрируются и локализуются в виде полярных плазм, «серпов» и других образований, которые затем закономерно перемещаются по яйцу.
Важную роль в ооплазматической сегрегации, по-видимому, играет поверхность яйца, служащая своеобразным каркасом. Это иллюстрируется опытами, в которых яйца амфибий центрифугировали так, что вся организация яйца нарушалась. Однако после этого происходило постепенное восстановление нормальной организации яйца, включая ту, что была достигнута в результате ооплазматической сегрегации.
Ооплазматическая сегрегация костистых рыб изучалась в нашей лаборатории. У вьюна только что отложенное яйцо шарообразно. Однако в течение первого получаса на его поверхности выделяется тонкий прозрачный свободный от желтка слой, который стягивается к анимальному полюсу и в итоге образует на нем бластодиск — цитоплазматический бугорок, который у вьюна занимает 1/5—1/10 часть объема всего яйца (у разных видов рыб бластодерма составляет от 1/3 до 1/20 всего объема). В бластодиске находится ядро, и только бластодиск делится во время дробления яйца, образуя на анимальной стороне «шапочку» клеток — бластодерму. Оказалось, что в бластодерме сконцентрированы многие (хотя и не все) ферменты яйца — их в ней от 50 до 80 %, т. е. концентрация ферментов в бластодерме в 10–25 раз выше, чем в остальной части яйца, заполненной желтком. Каков механизм такой концентрации? Исследуя это явление разными методами, мы обнаружили, что в бластодерме происходит связывание ферментных молекул со структурами клетки.
Очевидно, ооплазматическая сегрегация у рыб происходит в два этапа. Сначала на поверхности яйца образуется цитоплазматический бугорок — бластодиск. Механизм этого процесса остается неизвестным, но в нем, по-видимому, участвуют структурные белки клеточного скелета, каким-то образом отделяющиеся от массы желтка. Затем уже эти структурные белки связывают ферменты и как бы насасывают их в бластодерму. Этим создается неравномерность распределения ферментов по яйцу, в результате чего запасенные в оогенезе ферментные белки оказываются собранными в клетках зародыша, где они и должны функционировать.
Нам осталось рассмотреть вопрос о том, каким образом ооплазматическая сегрегация создает различия между клетками, т. е. почему некоторые (может быть, небольшие) различия в составе цитоплазмы приводят к разным направлениям дифференцировки. Сами исходные различия в цитоплазме между бластомерами, очевидно, не следует называть дифференцировкой: до определенного времени эти различия никак не сказываются на форме и поведении клеток. Ho затем, часто с началом гаструляции, различия в метаболизме и поведении клеток становятся очевидными. Можно предполагать, что даже небольшие различия цитоплазмы приводят к активации разных наборов генов. Однако каковы те конкретные химические вещества, которые создают различия зон цитоплазмы яйца, и каким образом эти вещества определяют включение разных генов, неизвестно.
3. Индукция
В «классической» механике развития эмбриональной индукцией называют такое влияние одной ткани на другую, соседнюю, которое вызывает в месте контакта новую дифференцировку. Иногда (обычно в искусственной экспериментальной ситуации) индуцирующая ткань (индуктор) уподобляет индуцируемую ткань себе (гомотипичная индукция). Ho в нормальном развитии индуктор вызывает в индуцируемой части второй ткани новую, третью дифференцировку. Таким образом, эмбриональная индукция приводит к увеличению числа клеточных типов и этим усиливает дифференциацию зародыша.
Главной моделью и объектом большинства исследований была и есть так называемая первичная эмбриональная индукция у амфибий, когда в ходе гаструляции или тотчас после нее зачаток хордомезодермы вдоль спинной стороны зародыша индуцирует в эктодерме над собой зачаток нервной системы — нервную пластинку, которая свертывается в нервную трубку и дифференцируется в головной и спинной мозг. Остальная эктодерма почти целиком становится эпителием кожи, и только на границе эктодермы и нервной пластинки узкая полоска ткани (нервный гребень) превращается в мигрирующие клетки, которые участвуют в образовании хряща и пигментных клеток кожи. Если зачаток хордомезодермы еще в самом начале гаструляции удалить, нервной системы не образуется, если же этот зачаток пересадить под раннюю эктодерму на боку или животе другого зародыша, то там образуется вторая нервная система.
Первичная эмбриональная индукция является региональной. Это означает, что передняя часть зачатка хордомезодермы индуцирует в эктодерме передние отделы мозга, следующая за ней — средний и задние отделы головного мозга, а задняя половина хордомезодермы индуцирует спинной мозг. Позже, когда уже образуется хорда, а нервная пластинка замыкается в трубку и погружается под эктодерму, она сама становится индуктором и индуцирует в окружающих ее свободноподвижных мезенхимных клетках дифференцировку в хрящ позвонков.
Второй классической моделью индукции, традиционно изучаемой в нашей стране, является развитие глаз. У нас есть эмбриологи, успешно работающие над этой проблемой более 40 лет. Зачатки глаз (глазные пузыри) вначале являются парными выростами переднего мозга. Глазной пузырь подходит к эктодерме, касается ее, а затем его передняя поверхность начинает вворачиваться внутрь наподобие того, как можно вдавить плохо надутый мяч. Так из глазного пузыря возникает глазной бокал. Внутренняя стенка бокала станет очень сложно устроенной сетчаткой, а наружняя — очень просто организованным пигментным эпителием. Когда глазной пузырь касается эктодермы, он индуцирует в ней образование хрусталика (линзы). Клетки эктодермы впячиваются в полость глазного бокала и образуют эпителиальный однослойный пузырек, который отделяется от эктодермы. Далее клетки задней стенки этого пузырька вытягиваются и заполняют всю его полость. Это и есть готовый хрусталик.
Если глазной пузырь удалить до того, как он коснется эктодермы, линзы обычно не образуется; если же глазной пузырь пересадить под эктодерму в любом месте зародыша (но в довольно узкий период развития), то линза образуется там. В следующий период развития, когда глазной бокал и линза в нем уже образованы, они еще раз становятся индукторами и снова действуют на эктодерму. На этот раз они вызывают в ней просветление — образование прозрачной роговицы глаза.
Явление эмбриональной индукции было открыто в первые десятилетия нашего века и связано с именем Ганса Шпемана. Ho относительно недавно был показан еще один случай индукции, действующей на самых ранних стадиях, еще до индукции нервной системы. Голландский ученый Ньюкоп удалял у тритона экваториальную часть бластулы, т. е. будущую мезодерму. В этом случае мезодерма у таких зародышей все же возникала — она индуцировалась в эктодерме, очевидно, под влиянием энтодермы. Из этих опытов следует, что ооплазматическая сегрегация определяет только два зачатка, а третий возникает между ними как результат индукции. Однако многочисленные данные о роли серого серпа и другие факты не позволяют так легко отказаться от ужо имеющихся представлений.
Представления о механизме индукции имеют длинную и сложную историю, в которой пока нет ясного конца. Проще всего представить, что индуктор выделяет, а индуцируемая ткань получает некое индуцирующее вещество. Это вещество не обязательно должно быть очень сложным и специфичным, важно, чтобы на данной стадии развития оно попадало в индуцируемую ткань только в необходимом месте и тем самым определяло место новой дифференцировки.
Низкая специфичность индуктора очевидна из ряда опытов. Если под эктодерму одного вида животных пересаживать индуктор от другого вида, то характер индуцируемой нервной трубки всегда идет не в соответствии с видом индуктора, а в соответствии с видовыми особенностями индуцируемой эктодермы. Индукцию можно получить при действии очень различных чужеродных источников индукции. Например, из зародыша цыпленка, причем на поздней стадии, удалось выделить индуцирующие вещества, действующие на амфибий. Все это показывает, что специфическую роль играет компетенция индуцируемых клеток — она существует только у определенной ткани и обычно только в течение короткого периода раз- вития. Тем не менее те индуцирующие вещества, которые удалось очистить, оказались белками, т. е. достаточно сложными веществами.
Из недавних опытов немецкого ученого Тидемана следует, однако, что чистый индуктор, который вызывает индукцию нервной системы (нейральный индуктор), не проникает в клетки эктодермы, а, очевидно, остается на поверхности клеток (ниже мы увидим, что так же действуют все белковые гормоны). Следовательно, вряд ли имеет смысл говорить, что индукторы могут дать клетке программу дифференцировки, скорее они лишь осуществляют выбор среди тех немногих программ, которые уже имеются в компетентных клетках.
Впрочем, вопрос этот в большой степени терминологический: что значит определить саму программу или осуществить выбор среди программ? Зависит ли от индуктора, быть или не быть данной дифференцировке? Конечно, зависит. Содержит ли вещество индуктора, пусть самое сложное, информацию о том, какой должна быть дифференцировка, какова будет форма клеток или органа и т. д.? Конечно, нет. В таком случае, кажется, удобнее говорить о выборе программ, а не о самой программе. Иначе термин «программа» теряет всякий смысл.