Геодезия строительной площадки для индивидуального дома...("Сделай сам" №1∙2006) — страница 9 из 37

Кроме того, негативное влияние отсутствия «земляного» провода на электронную аппаратуру сказывается следующим образом.

Так как сеть питания компьютеров трехпроводная, то помехи могут возникать не только между сетевыми проводами («фазой» и «нулем»), но и между «фазой» и «землей», а также возможны помехи «нуль»-«земля». Для эффективного подавления таких помех и необходимо наличие физического заземления. Трехпроводная схема подключения оборудования ЛВС к электрической сети является практически идеальной. Схема выглядит следующим образом (рис. 4).



Рис. 4


Здесь все подключено к заземленной сети питания. Потенциалы (напряжения) корпусов устройств одинаковые — они равны нулю, поскольку подключены к «земле». Даже в случае возникновения пробоя или повреждения изоляции любого из устройств (да даже при обычной работе потенциалы внешних устройств могут и, как правило, существенно отличаются от нуля!) «лишнее» напряжение уйдет на землю без всяких негативных последствий. Естественно, для этого провод, соединяющий устройства, должен иметь минимальное сопротивление.

Но в случае отсутствия «земли» в розетке (типичный случай «советской» сети питания) схема будет намного проще (рис. 5).



Рис. 5


Как видно, тут все то же самое за исключением провода заземления. А именно, при разности потенциалов компьютера и внешнего устройства (такое наблюдается сплошь и рядом) единственной связью потенциалов корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка). Это опасная ситуация, поскольку сквозные токи, текущие от большего потенциала к меньшему, могут «легко» выжечь электронику входных и выходных портов соединенных устройств. Что очень часто и происходит.

Выходом из этой сложной ситуации является организация электропитания, приведенная на рис. 6.



Рис. 6


В этом случае даже при отсутствии связи с реальной «землей» электрические потенциалы всех устройств выровнены, поскольку их корпуса надежно соединены между собой, поэтому сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет. Естественно, что омическое сопротивление дополнительного соединительного провода должно быть намного меньше, чем у проводов кабеля электропитания.

Что происходит, если в качестве за земляющего провода использовать нулевой провод питания при разводке питающей сети с трехполюсными розетками двухпроводным кабелем? На нем будет набегать разность потенциалов, вызванная падением напряжения от протекающего силового тока INUL. (рис. 7).



Рис. 7.Появление разности потенциалов при двухпроводном кабеле питания


Если в эти же розетки включать устройства с большим энергопотреблением, разность потенциалов (и импульсные помехи при включении-выключении) будет ощутимой. При этом эквивалентный источник напряжения при относительно невысокой э. д.с. ЕNUL (несколько вольт) будет иметь очень низкое выходное сопротивление, равное сопротивлению участка нулевого провода (доли Ом).

Уравнивающий ток через общий провод интерфейса INT можно оценить по формуле:

IINT = ЕNUL/(RNUL + RINT),

где: ЕNULINUL х RNULINUL = P/220; RNUL — сопротивление нулевого провода и соединительных контактов розеток; RINT — сопротивление общего провода интерфейса; Р — мощность, потребляемая подключенными устройствами (на рис. 7) справа (Р = Р2 + Р3).

Поскольку обычно сопротивление интерфейсного кабеля больше питающего, через общий провод интерфейса потечет ток, существенно меньший, чем силовой. Но при нарушении контакта в нулевом проводе питания через интерфейсный провод может протекать и весь ток, потребляемый устройством. Он может достигать нескольких ампер, что повлечет выход устройства из строя. Кроме того, не выровненные потенциалы корпусов устройств являются также источником помех в интерфейсах.

Если оба соединяемых устройства не заземлены в случае их питания от одной фазы сети, разность потенциалов между ними будет небольшой (вызванной разбросом емкостей конденсаторов в разных фильтрах). Уравнивающий ток через общий провод интерфейса будет мал, и разность потенциалов между схемными «землями» устройств будет тоже мала. Если незаземленные устройства подключены к разным фазам, разность потенциалов между их несоединенными корпусами может достигать порядка 190 В, при этом уравнивающий ток через интерфейс может составлять десятки миллиампер. Когда все соединения (разъединения) выполняются при отключенном питании, для интерфейсных схем такая ситуация почти безопасна. Но при коммутациях при включенном питании возможны неприятности: если контакты общего провода интерфейса соединяются позже (разъединяются раньше) сигнальных, разность потенциалов между схемными землями прикладывается к сигнальным цепям, и они выгорают. Поэтому так важно все подключения к компьютеру внешних устройств производить при выключенном электропитании, то есть на обесточенном компьютере.

Продолжение следует

Кран сломался

В.А. Волков


В этой статье рассмотрены неисправности кранов, которые чаще всего называют кран-буксами, просто буксами или «замыкалками». Правильное же название этих устройств — вентильные головки, хотя не стоит отказываться и от термина «кран». Именно так называют определенный узел в системе запорной арматуры сантехники.

Прежде всего хочется предупредить домашнего мастера, что при ремонте крана, расположенного над раковиной, ванной, унитазом и т. п., следует закрыть эти санприборы листом фанеры, оргалита, доской, что предохранит их от повреждения случайно упавшим инструментом.


Вентильные головки с вращательно-поступательным движением штока

Общий вид вентильной головки с вращательно-поступательным движением штока и ее деталировка представлены на рис. 1.



Рис. 1.Вентильная головка с вращательно-поступательным движением штока:

1 — указатель; 2 — винт; 3 — маховик; 4 — втулка сальника; 5 — латунное кольцо; 6 — набивка сальника; 7 — корпус; 8 — пластмассовая прокладка; 9 — уплотнительная набивка штока; 10 — шток; 11 — клапан; 12 — резиновая (кожаная) прокладка; 13 — седло корпуса крана (корпуса смесителя); 14 — пластмассовая прокладка-клапан; 15 — резиновая конусная прокладка-клапан; 16 — резиновая конусная прокладка


Перед устранением любой неисправности крана прежде всего следует перекрыть вентилем поступление воды к месту ремонта. Затем маховик вентильной головки немного отворачивают, чтобы убедиться в отсутствии воды (рис. 2).



Рис. 2.Заворачивание маховика вентиля и вывертывание вентильной головки


Эта предварительная операция устраняет еще одно препятствие, а именно распор между клапаном с прокладкой и седлом. Если маховик выполнен в виде колпачка, то его снимают после того, как вывернут крепящий винт и поднимут указатель. Вентильную головку отворачивают разводным или обычным гаечным ключом. Обязательно снимают со штока колпачок, иначе охватить грани головки губками ключа будет сложно. Чаще всего изнашивается и требует замены прокладка (рис. 3).



Рис. 3.Последовательность замены прокладки в вентильной головке с вращательно-поступательным движением штока:

а — удаление изношенной прокладки из клапана; б — срезание под углом 45° выступающей по кругу из клапана кромки прокладки; в — устранение старого уплотнителя; г — конусообразное наворачивание прядей нового уплотнения; д — заворачивание вентильной головки


В этом случае вывинчивают винт из клапана вместе с шайбой. Лучше пользоваться резиновыми прокладками, диаметр которых на 1 мм больше, чем внутренний диаметр гнезда клапана. Этого достаточно, чтобы прокладка плотно «села» в гнездо. Выступающую кромку прокладки обрезают ножницами по окружности примерно пол углом 45°. Тогда вентильная головка предупредит возможный гул и рев крана. Прокладки можно купить в специализированных магазинах. Не трудно также вырезать их ножом или вырубить просечкой из резины толщиной 3–4 мм.

Для прокладок можно использовать плотную искусственную кожу (толщиной 2–4 мм), но нельзя — пластмассу и микропористую резину. Первая — слишком тверда и потому не перекроет дефекты седла, вторая — пропускает воду и крошится.

Клапан выходит из строя намного реже, чем прокладка. У латунного клапана разрушение начинается с выкрошивания края гнезда. Естественно, когда отломится более половины окружности гнезда, прокладке не на чем будет держаться, и она выпадает. Клапан восстановить невозможно, поэтому его необходимо приобрести в магазине. При отсутствии нового клапана прокладку временно закрепляют винтом.

Вентильные головки в корпусах кранов или смесителей могут располагаться маховиком вверх, горизонтально либо наклонно. При выкручивании головки клапан иногда остается на седле Его достают узкогубцами или пинцетом (рис. 4).



Рис. 4.Поднятие клапана с седла крана или смесителя


Чтобы клапан не выпадал из отверстия в штоке, некоторые сантехники кромку этого отверстия расклепывают и вбивают туда хвостовик клапана, но делать это не следует, так как хвостовик клапана специально установлен в отверстии штока с зазором, что обеспечивает более равномерный износ прокладки Клапан не будет выпадать из штока, если на его хвостовик намотать нити уплотнения или обычные нитки, а затем с усилием вставить его в соответствующее отверстие (рис. 5).