[30], образуются облака, осадки, туманы, ветры. Ветры представляют собой горизонтальные перемещения атмосферного воздуха. Вертикальные перемещения воздуха, как уже говорилось выше, называются конвекцией.
Тропосферу можно назвать самым важным слоем атмосферы. Ее изучению географы уделяют особое внимание.
Переходный слой от тропосферы к стратосфере называется тропопаузой. Для тропопаузы характерны высокая разреженность воздуха и низкие температуры – до –60 °C над полюсами и до –80 °C над тропиками. Казалось бы, что должно быть наоборот – более низкая температура воздуха над холодными полюсами, а более высокая над жаркими тропиками. Но этот «парадокс» объясняется более высоким положением тропопаузы над тропиками, а также тем, что мощные потоки воздуха отделяют низкую теплую полярную тропопаузу от холодной высокой тропической. Если бы это разграничение отсутствовало, разница температур не была бы столь резко выражена.
В тропопаузе температура воздуха перестает понижаться с увеличением высоты, а далее, в стратосфере, температура воздуха с увеличением высоты возрастает.
Стратосфера расположена над тропосферой и простирается до высоты 50–55 км. Здесь находится озоновый экран (слой). От границы с тропосферой до озонового слоя, то есть до высоты 25–30 км, температура воздуха изменяется мало. Можно сказать, что она остается постоянной и составляет примерно –80 °C над экватором. Выше 30 км температура стратосферы начинает возрастать с увеличением высоты и на верхней границе ее доходит до +50 – +60 °C.
Современные сверхзвуковые самолеты летают в стратосфере на высотах до 20 км. Высотные метеозонды – беспилотные аэростаты, предназначенные для изучения атмосферы, могут подниматься выше озонового слоя на высоты до 40 км (рекордным был подъем японского метеозонда на высоту 53,7 км в 2013 году).
Ионосфера представляет собой верхний, самый разреженный слой атмосферы Земли, состоящий из ионизированных[31] газов. Из-за высокого содержания свободных электронов ионосфера способна отражать короткие радиоволны. Благодаря этому свойству ионосферы на нашей планете возможна дальняя радиосвязь (в результате многократного отражения от ионосферы и земной поверхности радиоволны распространяются на любые расстояния, несмотря на кривизну земной поверхности).
Ионосферу разделяют на две оболочки. Нижняя оболочка – мезосфера – простирается до высоты 80–85 км. Температура в мезосфере с увеличением высоты понижается и у верхней ее границы равна –70–80 °C. В верхней оболочке – термосфере, которая простирается до высоты примерно в 300 км, температура повышается до +1500 – +2000 °C и остается высокой до экзосферы, внешней части верхней атмосферы Земли, которая начинается на высоте в 500 – 1000 км[32]. В экзосфере температура снова понижается и постепенно доходит до космической, которая равна примерно –270 °C.
Условно считается, что атмосфера Земли простирается до высоты в 3000 км, а дальше уже простирается космическое пространство.
Температура воздуха. Нагрев атмосферы
Температура воздуха – одна из основных характеристик погоды, широко употребляемая и хорошо изученная. Температуру воздуха измеряют в тени на высоте 2 м от земной поверхности. Для измерения температуры используют термометры. Географы оперируют понятиями среднесуточной, среднемесячной и среднегодовой температуры. На географических картах распределение температур изображают изотермами – линиями, соединяющими точки с одинаковой температурой. Обычно используются понятия изотермы июля и изотермы января, то есть изотермы самого жаркого и самого холодного месяцев.
Атмосферный воздух нагревается посредством теплообмена с земной поверхностью, которая, в свою очередь, нагревается электромагнитным излучением Солнца, называемым солнечной радиацией.
Солнце нагревает земную поверхность, а от нее нагревается воздух.
Земля получает всего лишь одну двухмиллиардную часть солнечной радиации.
Различают три типа солнечной радиации – прямую, рассеянную и суммарную.
Прямой радиацией называется солнечное излучение, которое беспрепятственно доходит до поверхности Земли в виде прямых солнечных лучей в ясный день (то есть – при безоблачном небе). На долю прямой радиации приходится до 80 % поступающего к Земле солнечного тепла.
Рассеянной радиацией называется солнечное излучение, которое рассеивается в атмосфере нашей планеты. Воздух отражает и преломляет солнечные лучи. В пасмурную погоду рассеянная солнечная радиация является единственным источником солнечной энергии, поступающей к поверхности Земли.
Совокупность прямой и рассеянной радиации, поступающей на поверхность Земли, называют суммарной радиацией. Величина суммарной солнечной радиации зависит от угла падения солнечных лучей, то есть – от географической широты и от продолжительности освещения. Выше уже говорилось о том, что угол падения солнечных лучей для нагревания земной поверхности важнее продолжительности светового дня.
Также на количество солнечной радиации влияет прозрачность атмосферы. Чем больше в году ясных дней, тем больше прямой солнечной радиации получает земная поверхность и тем сильнее она будет нагреваться.
Обратите внимание! Самыми жаркими территориями на нашей планете являются области тропических пустынь, расположенных выше экватора (например – пустыня Сахара). На первый взгляд это может показаться удивительным. На экваторе должно быть жарче всего, ведь там солнечные лучи падают на земную поверхность под прямым углом. Но дело не только в угле падения солнечных лучей, но и в прозрачности атмосферы. В тропических пустынях климат континентальный, конвекции то есть – облаков практически нет и практически вся получаемая там солнечная радиация является прямой. Вдобавок, поверхность пустынь очень слабо отражает солнечные лучи, то есть – почти вся солнечная радиация, дошедшая до земной поверхности, поглощается ею и нагревает ее. На экваторе же из-за влажного климата высокая облачность, а кроме того, растительный покров экваториальной зоны отражает до 20 % солнечных лучей.
Радиация, отраженная от поверхности земли, воды или облаков, называется отраженной. Отраженная радиация не нагревает поверхность.
Так, например, у полюсов в дни солнцестояний (у Северного – 22 июня, а у Южного – 22 декабря) суммарная солнечная радиация больше, чем на экваторе, но поверхность земли на полюсах в эти дни практически не нагревается, потому что белая поверхность снега и льда отражает до 90 % солнечных лучей.
Отражающая способности объекта называется альбедо. Альбедо представляет собой отношение отраженной радиации к суммарной и выражается в долях или процентах. Альбедо свежевыпавшего снега может превышать 90 %. Альбедо облаков доходит до 80 %. А вот альбедо водной поверхности зависит от угла падения солнечных лучей – чем острее угол, тем больше света отражает вода. Разница получаестя огромной. Если в полдень на экваторе водная поверхность отражает всего 10 %, то в полярных районах – до 90 %. Средняя величина альбедо всей Земли составляет около 40 %.
Поглощенная радиация, которая нагревает земную поверхность, рассчитывается как разность суммарной и отраженной радиации.
Поскольку воздух нагревается от земной поверхности, то его температура зависит не только от широты, продолжительности освещения и характера земной поверхности, но и абсолютной высоты над уровнем океана. Вспомните, что в тропосфере температура понижается на 6 °C с каждым километром высоты.
Распределение суши и воды также влияет на температуру воздуха. Поскольку теплоемкость воды намного больше теплоемкости суши (земли, песка, камней и пр.), то суша быстро нагревается и быстро остывает, а вода нагревается медленно, но и сохраняет дольше тепло. Поэтому воздух над сушей днем теплее, чем над водой, а ночью холоднее. По той же причине на прибрежных территориях лето прохладнее, чем на тех же широтах, но вдали от берегов, а зима теплее.
Вода сохраняет высокую теплоемкость в любом агрегатном состоянии. Сухой воздух нагревается и остывает быстрее, чем влажный. Если на территорию, удаленную от берега моря, приходит влажный морской воздух, то резких суточных перепадов температуры не будет. Приход же сухого воздуха из центра материка на побережье приведет к резким перепадам.
Максимальная температура воздуха, зарегистрированная на нашей планете составляет 56,7 °C (Долина Смерти, Калифорния, США), а минимальная —89,2 °C (станция «Восток» в Антарктиде).
Зональное изменение температуры воздуха (изменение по широте) выражется в виде семи широтных тепловых поясов – один жаркий или тропический, два умеренных и два холодных и два морозных или полярных. Широтные пояса сменяются от экватора к полюсам.
Жаркий пояс расположен по обе стороны от экватора и ограничен среднегодовыми изотермами +20 °C. Эта область Земли получает больше всего солнечного тепла. В течение всего года здесь жарко, снег никогда не выпадает на равнинах, среднегодовая температура не опускается ниже +20 °C.
Умеренные пояса отделены от жаркого пояса среднегодовой изотермой +20 °C, а от холодных поясов – летней изотермой +10 °C. Средняя температура самого теплого месяца не опускается здесь ниже +10 °C.
Холодные тепловые пояса расположены между летними изотермами +10 °C и 0 °C. Средняя температура самого теплого месяца здесь ниже +10 °C.
Морозные тепловые пояса расположены в полярных широтах, внутри летней изотермы 0 °C.
Изменения температуры воздуха отмечаются и по долготе, с запада на восток, на одних и тех же широтах. Температуры воздуха внутри одного пояса могут сильно различаться. Так, например, средняя температура января в Братске составляет около –21 °C, а средняя температура января в городе Глазго, расположенном примерно на той же широте, составляет +4º °С. Основной причиной столь неравномерного нагрева воздуха является чередование суши и воды, материков и океанов. Летом над материками, особенно вдали от берегов, воздух прогревается сильнее, а зимой сильнее остывает.