Геология океана: загадки, гипотезы, открытия — страница 39 из 42

но из водной толщи, то конкреции — это новообразования. Они в буквальном смысле вырастают на границе раздела вода—осадок путем адсорбции растворенных или взвешенных в морских и грунтовых водах оксидных соединений металлов. Рост конкреций — чрезвычайно медленный процесс, длящийся миллионы лет.

Конкреции не безразличны к среде, в которой развеваются. Это относится прежде всего к осадкам. В абиссальных районах океана они «предпочитают» зоны распространения кремнистых отложений и красных глубоководных глин. Первые на 50% и более сложены скелетными остатками организмов, использующих для строительства раковин или других образований кремнезем. Это диатомеи, радиолярии, силикофлагелляты и другие мельчайшие планктонные организмы, чьи остатки после смерти опускаются на океанское дно. При этом разрушаются лишь органические компоненты, тогда как скелетные кремнистые составляющие остаются неизмененными. Диатомеи играют в составе планктона главную роль в областях распространения холодных вод, т. е. в высоких, приполярных широтах и областях апвеллинга. Радиолярии, напротив, широко распространены в экваториальной зоне.

Соответственно диатомовые осадки характерны для районов, граничащих с ледовой зоной, а радиоляриевые илы — для тропических широт. Эти зоны разделены обширными пространствами абиссали, покрытыми красной глубоководной глиной. Данные осадки формируются в аридных поясах климата, где состав планктона определяют карбонатстроящие организмы: кокколиты, фораминиферы, перидинеи и др. Известно, однако, что карбонат кальция довольно легко растворяется в холодных водах больших глубин, поэтому дна достигают лишь примеси, содержавшиеся в карбонатных раковинках. В Составе этих примесей много оксидных пленок железа и других металлов. Отсюда красный цвет глубоководной глины.

Исследование радиоляриевых илов показало, что при захоронении их на океанском дне начинаются интенсивные диагенетические (диагенез — превращение рыхлого осадка в твердое образование, породу) процессы перераспределения вещества. В пустотах раковин радиолярий вырастают пластинки глинистого минерала смектита, в кристаллическую решетку которого переходит большая часть (около 95%) катионов железу, содержащегося в осадке. Одновременно на поверхности самих раковин образуются пленки из оксидов других металлов, в основном марганца. При дальнейшем погружении геохимические условия в среде осадка меняются. В результате начинают растворяться многие раковинки радиолярий, а вместе с ними и оксидные пленки. Вместе с отжимаемыми из уплотняющегося осадка водами оксиды металлов поднимаются к границе раздела вода—осадок. Здесь они адсорбируются на нижней, тыльной стороне растущих железомарганцевых конкреций. Поскольку железо осталось в составе смектита, к поверхности дна мигрируют в основном марганец и другие металлы: медь, молибден, цинк и никель. Эти металлы в виде примесей тоже входят в состав абиссальных конкреций.

Таким образом, в процессе диагенеза кремнистых илов происходит разделение железа и марганца. Железо остается в осадке, а марганец переходит в состав конкреций. Однако в океанских водах железа достаточно много. Оно поступает в океан с континента и из гидротермальных источников на дне. Потому верхняя часть конкреций обогащается железом, а нижняя сложена марганцем и металлами-примесями. Марганец присутствует в форме тодорокита, бирнессита и σ-MnO2 [Marchig, Gundlach, 1981].

Аналогичные процессы протекают и в красных глубоководных глинах. На их поверхности также растут конкреции, содержащие нередко до 1—3% таких металлов-примесей, как медь, никель, цинк и кобальт. Именно они являются самым ценным компонентом железомарганцевых конкреций, из-за которых эти последние стали объектом пристального интереса исследователей разных стран.

Конкреции формируются не только в глубоководных обстановках. Они встречаются, и часто в большом количестве, на шельфах и вершинах подводных гор. Однако эти конкреции, как правило, лишены ценных примесей, так как развивались в осадках иного состава, чем кремнистые илы и красная глубоководная глина. Мелководные конкреции сложены преимущественно оксидами железа и почти не содержат меди, никеля, цинка и других металлов.

Хотя железомарганцевые конкреции встречаются во всех океанах, основные их месторождения находятся в Тихом океане и в восточной части Индийского. Самой богатой и перспективной для промышленной разработки залежей глубоководных конкреций считается зона между трансформными разломами Кларион и Клиппертон в восточной половине Тихого океана, на широте Мексики. В этом районе на глубинах от 4500 до 5500 м обнаружены обширные участки дна, буквально выложенные конкрециями. Самым, однако, важным является присутствие в их составе ценных металлов-примесей, прежде всего никеля и меди. Их содержание, достигающее 3—4%, является наиболее высоким по сравнению с конкрециями из других районов. В целом же считается, что железомарганцевыми конкрециями покрыто от 20 до 50% поверхности дна в абиссальных котловинах Тихого океана.

Как же зарождаются и растут конкреции? Железо и марганец, попадая в придонные воды, богатые кислородом, образуют тончайшие агрегаты, которые адсорбируются на поверхности твердых частиц. Таковыми на дне океана чаще всего становятся зубы акул и скелетные остатки млекопитающих, например кости китов. В ядрах конкреций, т. е. в наиболее древней их части, нередко находят зубы акул. В дальнейшем на поверхности зачаточных стяжений откладываются все новые порции марганца и железа. Как полагают многие ученые, не последнюю роль в этом играют микроорганизмы, находящиеся на поверхности конкреций. Их рост замедлен. Расчеты показали, что скорость формирования конкреций в районе подводного плато Блейк в Атлантическом океане составляет не более 1 мм за миллион лет. В Тихом океане эта скорость на 1—2 порядка выше. На шельфах, куда поступает гораздо большее количество железа и марганца с континента, темп развития конкреций еще выше. В Балтийском море он достигает 20—100 мм за 1000 лет.

Таким образом, в настоящее время большинство конкреций, находящихся. на поверхности глубоководных осадков, представляют собой чрезвычайно древние образования, рост которых продолжается и в наше время. Многие из них зародились еще в миоцене и даже в олигоцене, т. е. несколько десятков миллионов лет назад. Послойное исследование конкреций показало, что периоды их относительно быстрого развития чередовались с эпохами замедления, что было связано, видимо, с разным объемом поступавших в океанскую воду железа и марганца. Он был большим в эпохи интенсификации химического выветривания на континентах.

Железомарганцевые конкреции отсутствуют в районах с высокими скоростями накопления терригенных и других осадков, так как из-за незначительного роста они оказываются вскоре засыпанными осадочным материалом. Именно поэтому Атлантический океан довольно беден конкрециями. В Тихом океане, где скорости накопления кремнистых радиоляриевых осадков и красных глубоководных глин много выше скорости роста конкреций, последние находятся тем не менее на поверхности дна. Этот парадокс до настоящего времени не получил объяснения. Действительно, как получается, что конкреции, начало формирования которых восходит к миоцену и олигоцену, не были погребены более молодыми осадками? Более того, они залегают на их поверхности. В ряде случаев это можно объяснить придонными океанскими течениями, не дающими тонким частичкам садиться на дно. Однако в большинстве исследованных районов абиссали дело, по-видимому, в другом. Благодаря взвешивающему эффекту конкреции теряют в воде часть веса. Вследствие этого они как бы всплывают над окружающим рыхлым осадком [Соколов, Конюхов, 1985]. Впрочем, окончательно эту загадку железомарганцевых конкреций еще предстоит разрешить.

Буровые платформы спускаются с шельфа

Испокон веку люди добывали в море пропитание: рыбу, моллюсков, зверя, водоросли. Этот промысел и сейчас сохраняет свое значение, особенно для стран, имеющих выход к океану. Однако в конце XX в. его стал вытеснять другой промысел. Ныне человечество получает из океана горючее и химическое сырье в виде жидких и газообразных углеводородов. Сейчас на морские месторождения нефти и газа приходится почти 25% общемировой добычи углеводородов. Из года в год эта доля возрастает и, как полагают специалисты, к концу столетия достигнет 50%, а может быть, и более. Большинство открытых к настоящему времени морских месторождений нефти и газа расположено в пределах шельфов, входящих в состав подводной окраины континентов. Именно здесь находятся мощнейшие на Земле линзы осадочных пород, где формируются залежи углеводородов.

Основные ресурсы нефти и газа сосредоточены на пассивных окраинах материков. В их недрах уже открыто около 84 млрд т нефти и 40,6 трлн м3 газа, что составляет примерно 80% общих разведанных запасов этого сырья в океане, исключая шельфы СССР [Геодекян, Забанбарк, Конюхов, 1986]. Мощность осадочной толщи на пассивных континентальных окраинах в среднем достигает 8—10 км, а в отдельных районах возрастает до 14—15 и даже 21 км. Это связано с исключительно устойчивым режимом прогибания земной коры на границе континент—океан в тех районах, где они принадлежат к одной литосферной плите. В строении осадочного чехла здесь участвуют как терригенные породы (они сложены обломочным материалом, поступавшим с континента), так и карбонатные отложения, которые возникли за счет остатков морских организмов с так называемой карбонатной функцией. Заметную роль в нижней части разреза играют различные соли и магматические образования. Они остались от периодов рифтогенеза, сопровождавшего раскол древних суперконтинентов.

Основные ресурсы углеводородов разведаны в отложениях верхних и средних подразделений осадочного чехла, представленных терригенными и карбонатными породами. Они сформировались в позднем мезозое и кайнозое, т. е. на этапах, когда закладывались и развивались впадины Атлантического и Индийского океанов. Распределение запасов носит крайне неравномерный характер. По существу, основные залежи углеводородов приурочены к трем стратиграфическим диапазонам разреза: позднеюрскому, ранне (средне) меловому и миоценовому. Наиболее продуктивны нижне-среднемеловые комплексы отложений. В них содержится 27 млрд т нефти и 4,75 трлн м