Гильберт. Основания математики — страница 6 из 27

орые поставил Гильберт, состоит в том, какое математическое отношение существует между отношением доказательства и отношением истинности (между ├ и ╞): истинно ли все доказуемое? Доказуемо ли все истинное?


Помимо формулировки аксиом, Гильберт стал первым, кто с чисто математического уровня в основе геометрии поднялся на метаматематический, или метагеометрический, уровень, где рассматриваются свойства любой аксиоматической системы, в частности той, которую он определил для геометрии. Какими свойствами должна обладать аксиома? Гильберт выделил три характеристики: независимость, непротиворечивость и полнота.

Аксиоматическая система является независимой, если ни одна аксиома не может быть выведена из другой, то есть если система максимально экономична, не избыточна. И пусть не все сформулированные им аксиомы оказались независимыми (как выяснилось позже), Гильберт доказал независимость между различными группами аксиом. Он утверждал, что аксиома параллельных прямых независима от прочих аксиом, то есть она не может быть выведена на их основе, чем закрыл вопрос, остававшийся открытым несколько столетий. Это стало возможным с применением метода, ставшего вскоре классическим: построить модели геометрий, которые выполняют все желаемые аксиомы, кроме той, независимость которой проверяется, и тогда последняя не может быть следствием из других (поскольку если бы это было так, мы получили бы противоречие — аксиому и ее отрицание). Для доказательства независимости аксиомы параллельных прямых Гильберт создал модель неевклидовой геометрии. А для доказательства независимости аксиомы Архимеда он построил модель неархимедовой геометрии, в которой существуют бесконечно малые величины. Так Гильберт, по примеру Джузеппе Веронезе (1845-1917), распахнул двери для исследования геометрии нового типа.

Давид Гильберт, 1886 год.

Скульптурная группа, воздвигнутая в память о Гауссе и Вебере в Гёттингене. Гильберт опубликовал свои«Основания геометрии» (1899) по случаю ее торжественного открытия.

Кёнигсбергский университет, около 1890 года. Гильберт поступил сюда десятью годами ранее.


Вторым требованием, которое Гильберт предъявлял к своей аксиоматической системе, была непротиворечивость. Система аксиом является непротиворечивой, если не порождает разногласий, если нельзя вывести никакого противоречия на ее основе. Такую систему аксиом называют когерентной, или совместимой. Модели Бельтрами, Клейна, Пуанкаре и Римана доказали относительную непротиворечивость неевклидовых геометрий в отношении к евклидовой, поскольку эти неевклидовы модели содержались внутри собственно евклидова пространства. Но была ли непротиворечивой евклидова геометрия? Гильберт доказал непротиворечивость евклидовой геометрии относительно арифметики, впервые предложив чисто числовую модель. Он вывел числовое множество, в котором выполняются все геометрические аксиомы, в котором точки — это некоторые пары алгебраических чисел, а прямые — некоторые тройки этих чисел, в котором принадлежность какой-то точки прямой означает, что соблюдается некое числовое уравнение, и так далее. Таким образом, любая противоречивость его аксиоматической системы геометрии привела бы к противоречивости арифметики. Любое противоречие в выводах, cделанных на основе геометрических аксиом, было бы признано арифметическим (например, 0=1).


ВЛИЯНИЕ ГЕРЦА

Не исключено, что Гильберт не был близко знаком с аксиоматическими работами итальянской школы Пеано, зато он знал о достижениях немецкой школы — как в области геометрии (Паш), так и в области механики. Генрих Рудольф Герц (1857-1894) скончался в возрасте 37 лет, но за свою короткую жизнь он успел удивить современников как физик-экспериментатор (он открыл электромагнитные волны и фотоэлектрический эффект) и физик-теоретик. В 1894 году он опубликовал работу «Принципы механики, изложенные в новой связи», в которой аксиоматически изложил знания в этой области. К собственной аксиоматической системе у него имелось два требования: допустимость и корректность. Допустимость совпадает с непротиворечивостью, с отсутствием противоречий. А корректность — с полнотой, с возможностью доказать в рамках этой теории все, что является истинным в мире. Эти два понятия перекликаются с введенными Давидом Гильбертом.

Генрих Рудольф Герц, около 1893 года.


Следовательно, Гильберт свел непротиворечивость евклидовой геометрии к непротиворечивости арифметики, что на тот момент было чем-то само собой разумеющимся, хотя вскоре он признал: проблема остается открытой и имеет высокий приоритет (и вскоре мы в этом убедимся). Неевклидовы геометрии основывались на евклидовой, которая, в свою очередь, держалась на арифметике действительных чисел. Как во сне индийского мудреца, мир покоится на спинах слонов, а те стоят на спине черепахи. Ну а черепаха? Вопрос о непротиворечивости арифметики сразу же обрел остроту. В своей книге Гильберт этот вопрос не затронул, тем не менее он считал, что совместимость арифметических аксиом может быть доказана довольно просто (как же он ошибался!).

Наконец, третье требование, которое Гильберт выдвинул через несколько лет,— это, по возможности, полнота (хотя она едва намечена в «Основаниях»). Аксиоматическая система называется полной, если в рамках системы мы можем доказать все пропозиции, являющиеся истинными относительно объектов системы, то есть если ни одна из истин не избегает доказательства, если все истины доказуемы. Когда непротиворечивость убеждает нас в том, что все доказуемое верно («все теоремы — истины»), полнота гарантирует нам обратное: все истинное доказуемо («все истины — теоремы»). Если система аксиом, которую он предложил для евклидовой геометрии, была полной, она позволяла вывести все известные ныне и в будущем результаты евклидовой геометрии.

Не будем опережать события, но ответ на этот вопрос не был пустяком. В итоге Гильберт убедился, что любая аксиоматическая система, представляющая минимальный интерес, является неполной. В ней истинное не совпадает с доказуемым. Существуют истинные пропозиции, которые не могут быть доказаны. Данная парадоксальная ситуация напоминает положение следователя, который точно знает, кто убийца, но неспособен доказать это. К счастью, в 1951 году польский логик Альфред Тарский (1902-1983) выяснил, что элементарная версия евклидовой геометрии является полной — очевидно, что эта версия не содержит арифметики, поэтому не противоречит знаменитым теоремам о неполноте арифметики Курта Гёделя (1906-1978).

Подведем итог. Гильберт предъявлял своей геометрической аксиоматике три требования: независимость, непротиворечивость и полнота. Немецкий математик был убежден, что его аксиоматика минимальна, доказав, в частности, что аксиома параллельных прямых и аксиома Архимеда независимы от прочих. Кроме того, он частично разрешил задачу непротиворечивости, доказав относительную непротиворечивость геометрии арифметике. Таким образом были заложены основы, на которых можно аксиоматически изучать любую геометрию — евклидову или неевклидову, архимедову или неархимедову, — и показано, как можно вывести известные геометрические результаты в зависимости от того, какие группы аксиом приняты.


КРИКИ БЕОТИЙЦЕВ

В письме, адресованном одному коллеге в 1829 году, Гаусс признавался, что в жизни не опубликует ничего по неевклидовой геометрии, так как опасается «криков беотийцев». Немецкий математик намекал на кантианцев, для которых евклидова геометрия была единственно возможной, поскольку единственность пространства предполагала единственность геометрии. Физическое пространство — математическая геометрия. Гаусс не отправил в печать результаты своих исследований, боясь скандала, поскольку открытие неевклидовых геометрий поставило бы под сомнение всю кантианскую философию. Если существует более одной логически мыслимой геометрии, задаваться вопросом об истинности определенной одной — все равно что выяснять, является ли десятичная система более истинной, чем двоичная, а декартова — более истинной, чем полярная. Относительность геометрии подчеркивала, в противовес идеям Канта, что пространство аморфно, и нет смысла спрашивать, какая геометрия истинна. Гаусс был не единственным математиком, испытывавшим антипатию к великому Канту. Георг Кантор признавался, что чтение его работ вызывает у него недомогание, и называл прусского мыслителя «софистом-филистером, который так мало знает о математике».

Как и у Гаусса, у Гильберта были свои позитивные и негативные моменты при взаимодействии с одним философом, которые были следствием идей, изложенных им в «Основаниях геометрии». Речь о логике и философе Готлобе Фреге (1848-1925). Этот угрюмый преподаватель Йенского университета считался отцом современной логики (см. главу 4), одним из самых упрямых защитников аксиоматического подхода Античности. Реакция Фреге на книгу Гильберта не заставила себя долго ждать. Так началась переписка, и так стало нарастать недопонимание.

В первом письме, отправленном в конце 1899 года, Фреге обрушился на «Основания геометрии» с суровой и педантичной критикой. Раздраженный, но взявший себя в руки Гильберт ответил другим развернутым посланием. В дальнейшем он был более лаконичным, и когда Фреге предложил ему опубликовать переписку, Гильберт категорически отказался. И все же эта полемика представляет собой большой интерес, поскольку демонстрирует открытое столкновение двух концепций аксиоматического метода — старой и традиционной, представляемой Фреге, и новой, начатой Гильбертом.

Фреге никогда не оспаривал кантианский анализ геометрии и не допускал никаких других методов, кроме аксиоматического, описанного Аристотелем во «Второй аналитике» и задействованного Евклидом в «Началах». Аксиомы были очевидными истинами, связанными с реальностью. Следовательно, аксиома параллельных прямых была либо истинной, либо нет. Но и того и другого одновременно быть не могло. В одном из писем немецкий философ возмущался: