2) биполярные – с двумя отростками;
3) мультиполярные – более двух отростков.
По функции подразделяются на:
1) афферентные (чувствительные);
2) эфферентные (двигательные, секреторные);
3) ассоциативные (вставочные);
4) секреторные (нейроэндокринные).
Структурная и функциональная характеристика глиальных клеток
Клетки нейроглии являются вспомогательными клетками нервной ткани и выполняют следующие функции:
1) опорную;
2) трофическую;
3) разграничительную;
4) секреторную;
5) защитную и др.
Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков. На основании размеров они подразделяются прежде всего на макроглию и микроглию. Кроме того, клетки макроглии имеют эктодермальный источник происхождения (из нейроэктодермы), клетки микроглии развиваются из мезенхимы.
Эпендимоциты имеют строго ограниченную локализацию: выстилают полости центральной нервной системы (центральный канал спинного мозга, желудочки и водопровод головного мозга). По своей морфологии они несколько напоминают эпителиальную ткань, так как образуют выстилку полостей мозга. Эпендимоциты имеют почти призматическую форму, и в них различают апикальный и базальный полюса. Своими боковыми поверхностями они связаны между собой посредствам десмосомных соединений. На апикальной поверхности каждого эпиндимоцита расположены реснички, за счет колебаний которых обеспечивается движение цереброспинальной жидкости в полостях мозга.
Таким образом, эпендимоциты выполняют следующие функции нервной системе:
1) разграничительную (образуя выстилку полостей мозга);
2) секреторную;
3) механическую (обеспечивают движение церебральной жидкости);
4) опорную (для нейроцитов);
5) барьерную (участвуют в образовании поверхностной глиальной пограничной мембраны).
Астроциты – клетки с многочисленными отростками, напоминающими в совокупности форму звезды, откуда и происходит их название. По особенностям строения их отростков астроциты подразделяются на:
1) протоплазматические (короткие, но широкие и сильно ветвящиеся отростки);
2) волокнистые (тонкие, длинные, слабо ветвящиеся отростки).
Протоплазматические астроциты выполняют опорную и трофическую функции для нейроцитов серого вещества.
Волокнистые астроциты осуществляют опорную функцию для нейроцитов и их отростков, так как их длинные, тонкие отростки образуют глиальные волокна. Кроме того, терминальные расширения отростков волокнистых астроцитов образуют периваскулярные (вокругсосудистые) глиальные пограничные мембраны, являющиеся одним из структурных компонентов гематоэнцефалического барьера.
Олигодендроциты – малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системы и в зависимости от области локализации подразделяются на:
1) мантийные глиоциты (окружают тела нервных клеток в нервных и вегетативных ганглиях;
2) леммоциты, или шванновские клетки (окружают отростки нервных клеток, вместе с которыми образуют нервные волокна);
3) концевые глиоциты (сопровождают концевые ветвления дендритов чувствительных нервных клеток).
Все разновидности олигодендроцитов, окружая тела, отростки и окончания нервных клеток, выполняют для них опорную, трофическую, а также барьерную функции, изолируя нервные клетки от лимфоцитов.
Дело в том, что антигены нервных клеток являются чужеродными для собственных лимфоцитов. Поэтому нервные клетки и различные их части отграничиваются от лимфоцитов крови и соединительной ткани:
1) вокругсосудистыми пограничными глиальными мембранами;
2) поверхностной глиальной пограничной мембраной;
3) леммоцитами и концевыми глиоцитами (на периферии).
При нарушении этих барьеров возникают аутоиммунные реакции.
Микроглия представлена мелкими отростчатыми клетками, выполняющими защитную функцию – фагоцитоз. На основании этого их называют глиальными макрофагами. Большинство исследователей считают, что глиальные макрофаги (как и любые другие макрофаги) являются клетками мезенхимального происхождения.
Нервные волокна
Нервные волокна являются не самостоятельными структурными элементами нервной ткани, а представляют собой комплексные образования, включающие следующие элементы:
1) отростки нервных клеток (осевые цилиндры);
2) глиальные клетки (леммоциты, или шванновские клетки);
3) соединительно-тканную пластинку (вязальную пластинку).
Главной функцией нервных волокон является проведение нервных импульсов. При этом отростки нервных клеток (осевые цилиндры) проводят нервные импульсы, а глиальные клетки (леммоциты) способствуют этому проведению.
По особенностям строения и функции нервные волокна подразделяются на две разновидности:
1) безмиелиновые;
2) миелиновые.
Строение и функциональные особенности безмиелинового нервного волокна. Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько (5 – 20) осевых цилиндров. Каждый осевой цилиндр прогибает цитолемму леммоцита и как бы погружается в его цитоплазму. При этом осевой цилиндр окружен цитолеммой леммоцита, а ее сближенные участки составляют мезаксон.
Мезаксон в безмиелиновых нервных волокнах не играет существенной функциональной роли, но является важным структурным и функциональным образованием в миелиновом нервном волокне.
По своему строению безмиелиновые нервные волокна относятся к волокнам кабельного типа. Несмотря на это, они тонкие (5 – 7 мкм) и проводят нервные импульсы очень медленно (1 – 2 м/с).
Строение миелинового нервного волокна. Миелиновое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей:
1) осевой цилиндр один и погружается в центральную часть цепи леммоцита;
2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой;
3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна;
4) на периферии расположена базальная пластинка.
На поперечном сечении миелинового нервного волокна видны следующие структурные элементы:
1) осевой цилиндр;
2) миелиновый слой;
3) неврилемма;
4) базальная пластинка.
Поскольку основу любой цитолеммы составляет билипидный слой, то миелиновую оболочку миелинового нервного волокна (закрученный мезаксон) образуют наслоения липидных слоев, интенсивно окрашивающихся в черный цвет осмиевой кислотой.
По ходу миелинового нервного волокна видны границы соседних леммоцитов – узловые перехваты (перехваты Ранвье), а также участки между двумя перехватами (межузловые сегменты), каждый из которых соответствует протяженности одного леммоцита. В каждом межузловом сегменте отчетливо прослеживаются насечки миелина – прозрачные участки, в которых содержится цитоплазма леммоцита между витками мезаксона.
Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется сальтаторным способом проведения нервных импульсов: скачками от одного перехвата к другому.
Реакция нервных волокон на разрыв или пересечение. После разрыва или пересечения нервного волокна в нем осуществляются процессы дегенерации и регенерации.
Поскольку нервное волокно представляет собой совокупность нервных и глиальных клеток, то после его повреждения отмечается реакция (как в нервных, так и в глиальных клетках). После пересечения наиболее заметные изменения проявляются в дистальном отделе нервного волокна, где отмечается распад осевого цилиндра, т. е. дегенерация отсеченного от тела участка нервной клетки. Леммоциты, окружающие этот участок осевого цилиндра, не погибают, а округляются, пролиферируют и образуют тяж глиальных клеток по ходу распавшегося нервного волокна. При этом эти глиальные клетки фагоцитируют фрагменты распавшегося осевого цилиндра и его миелиновую оболочку.
В перикарионе нервной клетки с отсеченным отростком проявляются признаки раздражения: набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, дегрануляцию мембран зернистой ЭПС, вакуолизацию цитоплазмы и др.
В проксимальном отделе нервного волокна на конце осевого цилиндра образуется расширение – колба роста, которая постепенно врастает в тяж глиальных клеток на месте погибшего дистального участка этого же волокна. Глиальные клетки окружают отрастающий осевой цилиндр и постепенно трансформируются в леммоциты. В результате этих процессов происходит регенерация нервного волокна со скоростью 1 – 4 мм в сутки. Осевой цилиндр, подрастая к концевым глиоцитам распавшегося нервного окончания, разветвляется и формирует с помощью глиальных клеток концевой аппарат (двигательное или чувствительное окончание). В результате регенерации нервного волокна и нервного окончания восстанавливается иннервация нарушенного участка (реиннервация), что приводит к восстановлению его функций. Следует подчеркнуть, что необходимым условием регенерации нервного волокна является четкое сопоставление проксимального и дистального участков поврежденного нервного волокна. Это достигается сшиванием концом перерезанного нерва.
Не следует смешивать понятия «нервное волокно» и «нерв».
Нерв – комплексное образование, состоящее из:
1) нервных волокон;
2) рыхлой волокнистой соединительной ткани, образующей оболочки нерва.
Среди оболочек нерва различают:
1) эндоневрий (соединительную ткань, окружающую отдельные нервные волокна);
2) периневрий (соединительную ткань, окружающую пучки нервных волокон);
3) эпиневрий (соединительную ткань, окружающую нервный ствол).
В названных оболочках проходят кровеносные сосуды, обеспечивающие трофику нервных волокон.
Нервные окончания (или концевые нервные аппараты)