Мышца состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. В мышечной ткани различают два вида регенерации – физиологическую и репаративную. Физиологическая регенерация проявляется форме гипертрофии мышечных волокон.
Репаративная регенерация развивается после повреждения мышечных волокон.
В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл образуются мышечные точки, которые растут навстречу друг другу, затем сливаются, приводя к закрытию дефекта.
Скелетные мышцы получают двигательную, чувствительную и трофическую иннервацию.
17. Мышечные ткани. Сердечная и гладкая мышечные ткани
Сердечная мышечная ткань
Структурно-функциональной единицей сердечной поперечнополосатой мышечной ткани является кар-диомиоцит. По строению и функциям кардиомиоциты подразделяются на две группы:
1) типичные, или сократительные, кардиомиоциты, образующие своей совокупностью миокард;
2) атипичные кардиомиоциты, составляющие проводящую систему сердца.
Сократительный кардиомиоцит представляет собой почти прямоугольную клетку в центре которой локализуется обычно одно ядро.
Атипичные кардиомиоциты образуют проводящую систему сердца, которая включает в себя следующие структурные компоненты:
1) синусо-предсердный узел;
2) предсердно-желудочковый узел;
3) предсердно-желудочковый пучок (пучок Гисса) – ствол, правую и левую ножки;
4) концевые разветвления ножек (волокна Пуркинье). Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты.
Источники развития кардиомиоцитов – миоэпикар-диальные пластинки, представляющие собой определенные участки висцеральных спланхиотомов.
Гладкая мышечная ткань мезенхимального происхождения
Локализуется в стенках полых органов (желудка, кишечника, дыхательных путей, органов мочеполовой системы) и в стенках кровеносных и лимфатических сосудов. Структурно-функциональной единицей является миоцит: клетка веретенообразной формы длиной 30—100 мкм (в беременной матке – до 500 мкм), диаметром 8 мкм, покрытая базальной пластинкой.
Миозиновые и актиновые филаменты составляют сократительный аппарат миоцита.
Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой.
Сокращение гладкомышечной ткани обычно бывает длительным, что обеспечивает поддержание тонуса полых внутренних органов и сосудов.
Гладкомышечная ткань не образует мышцы в анатомическом понимании этого слова. Однако в полых внутренних органах и в стенке сосудов между пучками миоцитов содержатся прослойки рыхлой волокнистой соединительной ткани, образующие своеобразный эндомизий, а между пластами гладкой мышечной ткани – перимизий.
Регенерация гладкомышечной ткани осуществляется несколькими способами:
1) посредством внутриклеточной регенерации (гипертрофии при усилении функциональной нагрузки);
2) посредством митотического деления миоцитов (пролиферации);
3) посредством дифференцировки из камбиальных элементов (из адвентициальных клеток и миофи-бробластов).
18. Нервная ткань
Структурно-функциональные особенности нервной ткани:
1) состоит из двух основных типов клеток: нейроци-тов и нейроглии;
2) межклеточное вещество отсутствует;
3) нервная ткань не подразделяется на морфологические подгруппы;
4) основной источник происхождения: нейроэкто-дерма.
Структурные компоненты нервной ткани:
1) нервные клетки (нейроциты или нейроны);
2) глиальные клетки – глиоциты.
Нейроциты – это структурные компоненты нервной ткани. Клетки нейроглии способствуют выполнению перечисленных функций.
Источники и этапы развития нервной ткани
Основной источник – нейроэктодерма. Некоторые клетки глиальные клетки развиваются из микроглии и из мезенхимы.
Этапы развития:
1) нервная пластинка;
2) нервный желобок;
3) нервная трубка, ганглиозная пластинка, нейраль-ные плакоды.
Из нервной трубки развивается нервная ткань, в основном – из органов центральной нервной системы (спинного и головного мозга). Из ганглиозной пластинки развивается нервная ткань некоторых органов периферической нервной системы (вегетативных и спинальных ганглиев). Из нейральных плакод развиваются ганглии черепных нервов. В процессе развития нервной ткани вначале образуются два типа клеток:
1) нейробласты;
2) глиобласты. Характеристика нейроцитов
По морфологии все нейроциты являются отростча-тыми клетками. в каждой нервной клетке выделяют две части:
1) клеточное тело (перикарион);
2) отростки.
Отростки нейроцитов подразделяются на две разновидности:
1) аксон, который проводит импульсы от клеточного тела (на другие нервные клетки или на рабочие органы);
2) дендрит, который проводит импульсы к клеточному телу.
Классификация нейроцитов Нервные клетки классифицируются:
1) по морфологии;
2) по функции.
По морфологии по количеству отростков подразделяются на:
1) униполярные (псевдоуниполярые) с одним отростком;
2) биполярные (с двумя отростками);
3) мультиполярные (более двух отростков). По функции подразделяются на:
1) афферентные (чувствительные);
2) эфферентные (двигательные, секреторные);
3) ассоциативные (вставочные);
4) секреторные (нейроэндокринные).
19. Нервная ткань (продолжение)
Клетки нейроглии являются вспомогательными клетками и нервной ткани и выполняют следующие функции:
1) опорную;
2) трофическую;
3) разграничительную;
4) секреторную;
5) защитную и др.
Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков. На основании размеров они подразделяются, на макроглию и микроглию. Клетки макроглии имеют эктодермаль-ный источник происхождения (из нейроэктодермы), клетки микроглии развиваются из мезенхимы.
Эпендимоциты выполняют следующие функции в нервной системе:
1) разграничительную (образуя выстилку полостей мозга);
2) секреторную;
3) механическую (обеспечивает движение церебральной жидкости);
4) опорную (для нейроцитов);
5) барьерную (участвуя в образовании поверхностной глиальной пограничной мембраны).
Астроциты – клетки с многочисленными отростками, напоминающими в совокупности форму звезды, откуда и происходит их название. По особенностям строения их отростков астроциты подразделяются на:
1) протоплазматические (короткие, но широкие и сильно ветвящиеся отростки);
2) волокнистые (тонкие, длинные, слабо ветвящиеся отростки).
Волокнистые астроциты осуществляют опорную функцию для нейроцитов и их отростков, так как их длинные тонкие отростки образуют глиальные волокна. Кроме того, терминальные расширения отростков волокнистых астроцитов образуют периваскулярные (вокругсосудистые) глиальные пограничные мембраны, являющиеся одним из структурных компонентов гематоэнцефалического барьера.
Олигодендроциты – малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системе и в зависимости от области локализации подразделяются на:
1) мантийные глиоциты (окружают тела нервных клеток в нервных и вегетативных ганглиях);
2) леммоциты, или шванновские клетки (окружают отростки нервных клеток, вместе с которыми образуют нервные волокна);
3) концевые глиоциты (сопровождают концевые ветвления дендритов чувствительных нервных клеток).
Микроглия представлена мелкими отростчатыми клетками, выполняющими защитную функцию – фагоцитоз. На основании этого их называют глиальными макрофагами. Большинство исследователей считают, что глиальные макрофаги (как и любые другие макрофаги) являются клетками мезенхимального происхождения.
20. Нервные волокна
Нервные волокна представляют собой комплексные образования, включающие следующие элементы:
1) отростки нервных клеток;
2) глиальные клетки;
3) соединительно-тканную пластинку.
Главной функцией нервных волокон является проведение нервных импульсов. Отростки нервных клеток проводят нервные импульсы, а глиальные клетки способствуют этому проведению.
По особенностям строения и функции нервные волокна подразделяются на две разновидности:
1) безмиелиновые;
2) миелиновые.
Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько осевых цилиндров.
Строение миелинового нервного волокна. Миели-новое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей:
1) осевой цилиндр один и погружается в центральную часть цепи леммоцита;
2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой;
3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна;
4) на периферии расположена базальная пластинка. На поперечном сечении миелинового нервного волокна видны следующие структурные элементы:
1) осевой цилиндр;
2) миелиновый слой;
3) неврилемма;
4) базальная пластинка.
По ходу миелинового нервного волокна видны границы соседних леммоцитов – узловые перехваты (перехваты Ранвье), а также участки между двумя перехватами (межузловые сегменты), каждый из которых соответствует протяженности одного леммоцита. В каждом межузловом сегменте отчетливо прослеживаются насечки миелина – прозрачные участки.
Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется саль-таторным способом проведения нервных импульсов: скачками от одного перехвата к другому.
Нервное волокно это совокупность нервных и гли-альных клеток, после его повреждения отмечается реакция. После пересечения наиболее заметные изменения проявляются в дистальном отделе нервного волокна, где отмечается распад осевого цилиндра. Леммоциты, окружающие этот участок осевого цилиндра, не погибают, а округляются, пролиферируют и образуют тяж глиальных клеток по ходу распавшегося нервного волокна.