Пусть надо составить пробу 50 процентов Pb и столько же Sn. Это означает, что на каждые 50 атомов свинца должно приходиться 50 атомов олова. Так и будет, если 1 грамм-атом свинца (82 грамма) сплавить с 1 грамм-атомом олова (50 граммов). Разумеется, вовсе не обязательно брать именно такие количества. Можно обойтись половинками или даже меньшими долями грамм-атома. Лишь бы соблюдалось соотношение 50 процентов Pb плюс 50 процентов Sn. (Правда, чем весомее проба, тем точнее измерения!)
Возьмем еще пример: 90 процентов Pb плюс 10 процентов Sn. 90 процентов от 82 граммов (1 грамм-атом Pb) составит 73,8 грамма, а 10 процентов от 50 граммов (1 грамм-атом Sn) соответственно 5 граммов.
Теперь осталось взять навески Pb и Sn попарно и сплавить в тигле или, на худой конец, в консервной банке.
Здесь читателю предлагается возможность нарисовать чайку на расческе.
Измерьте точки плавления (затвердевания) каждой пробы, а также чистого олова и свинца.
У вас получится 11 цифр. А теперь возьмите линейку и начертите на листке миллиметровки три прямые линии так, чтобы они образовывали букву «П», перевернутую кверху ногами. Длину перекладины (это ось абсцисс) лучше взять равной 10 сантиметрам. Тогда каждое сантиметровое деление будет соответствовать одной из ваших проб. Крайние деления — чистым свинцу и олову. На правой вертикали (это ось ординат) нанесите отметку на высоте, скажем, 65,4 миллиметра. Поставьте рядом цифру 327 градусов. Это температура плавления свинца. Важно запомнить, что избранный масштаб у нас таков: 1 миллиметр соответствует 5 градусам. Теперь легко будет нанести метку 232 градуса на левую вертикаль. Для каждой из остальных девяти отметок можно восстановить по перпендикуляру из сантиметровых делений на оси «состав». Они поднимутся словно зубья расчески. На каждый зубец, соответствующий какому-то определенному соотношению компонентов в сплаве, нанесите температуру плавления. Осталось соединить точки плавной линией — диаграмма готова. Посмотрите: разве не напоминает ваша кривая взмах крыльев мхатовской чайки?
Самая нижняя точка кривой (примерно 180 градусов) очутится на вертикали, исходящей из абсциссы с составом 30 процентов Pb плюс 70 процентов Sn.
Конечно, дома или в школьном химическом кружке трудно провести точные измерения. Для этого и металлы должны быть хорошо очищенными и точки надо «снимать» чаще. Но главное сделано — мы установили характер диаграммы для двухкомпонентной системы. Два плавных «крыла» нашей «чайки» сходятся в самой нижней точке кривой.
Эта точка называется эвтектической (от греческого «легкоплавкий»). Действительно, она отвечает составу самой легкоплавкой из всех возможных процентных комбинаций двух наших металлов.
Странно, не так ли? Берешь олово, добавляешь к нему более тугоплавкий свинец, а повышения жаростойкости не получаешь. Наоборот, температура плавления падает. В эвтектической точке она на целых 50–60 градусов ниже, чем у оловянного солдатика. (Бедный оловянный солдатик, ему нельзя иметь дела даже с охотничьей дробью без ущерба для стойкости!) Как же так?
Неприятная штука — гололедица! И хотя мостовая, вестимо, не место для пируэтов, толпа прохожих из-за капризов погоды вынуждена под носом у автомобилей выписывать вензеля почище комиков «Айс ревю». Как избавить пешеходов от напасти? Неужто ждать оттепели? Не обязательно. Дворники навострились расправляться с прозрачной броней асфальта не хуже солнца. Что же помогает им? Костры? Паяльные горелки? Ни то, ни другое. Поваренная соль.
Как насолить гололедице? Пожалуй, лучше дворников об этом никто не расскажет.
Известное дело: когда встречаются лед и пламень, после такого «рандеву» остается лишь мокрое место.
Однако подобного же эффекта удается достичь и без огня. Стоит покруче посолить снег, как он начинает таять. Даже при минусовых температурах. Ведь любой раствор замерзает при более низкой температуре, чем чистый растворитель. Так и система вода — соль. В своем письме Курнакову — не забыли? — Подкопаев сообщал, что работы в заливе Кара-Богаз-Гол не прекращались и при минус 2,5 градуса. Застывая от холода, однофазная система вода — соль не преминула бы раздвоиться на кристаллы льда и крупицы соли. Это явление используется в технике: так вымораживают соли из растворов.
Обратное превращение — переход смеси соли и льда в раствор — начинается задолго до того, как столбик ртути в термометре поднимется к нулевой отметке. А вот чистому льду не удастся расплавиться, не дождавшись этого момента. Однако вовсе не обязательно заставлять лед томиться в ожидании теплой погоды. Тем паче, если он вопреки правилам уличного движения превращает злополучных пешеходов в незадачливых фигуристов. Можно смешать его с солью, и тротуар перестанет выполнять несвойственную ему миссию катка.
Роль соли способна сыграть в сплаве свинцовая дробь, роль воды — оловянный солдатик. Представьте себе, что добавки свинца растворяются в олове. Температура плавления такого «раствора» все больше понижается — вплоть до эвтектической точки.
Точно так же можно объяснить снижение плавкости вдоль второго крыла кривой. Только там наоборот — олово растворяется в свинце.
Наша «чайка» рассекает диаграмму надвое. Верхняя часть — область жидкого расплава. Однородной, однофазной среды. Нижняя составлена уже из нескольких фаз. Рассмотрим рисунок на странице 75.
Когда расплав охлаждается, он, как и рассол, претерпевает фазовые превращения. Сперва выделяются кристаллы чистого растворителя, скажем свинца. Значит, в оставшейся жидкости соотношение компонентов изменилось в пользу олова. Новому составу жидкости будет соответствовать иная точка на диаграмме. Она расположена левее первоначальной. Температура застывания оставшегося раствора тоже изменилась — упала еще ниже.
По мере выделения кристаллов свинца равновесие твердая фаза — раствор начинает скользить вдоль крыла кривой по направлению к эвтектической точке. Правда, количество остаточного раствора постепенно убывает, зато концентрация олова в нем непрерывно растет. В определенный момент наряду с чистым свинцом начинает кристаллизоваться и раствор олова в свинце. Застывшие в последнюю очередь порции раствора — самые «грязные». В них больше всего олова.
Разумеется, это не означает, что слиток с краев, откуда обычно начинается затвердевание, будет состоять из чистого свинца, а в середине — из «грязного». Кристаллизация быстро захватывает всю массу расплава, и направленного перемещения фаз не происходит. Так что слиток обладает, как правило, довольно однородной микроструктурой: кристаллики чистого свинца вкраплены в кристаллическую массу растворов олова в свинце.
Между тем направленное разделение компонентов возможно! Именно так получают сверхчистые вещества.
Правда, такая картина отражена лишь той зоной диаграммы, которая находится правее эвтектической точки.
Но отличие для левой зоны невелико: там кристаллики олова рассеяны в массе затвердевших растворов олова в свинце.
В эвтектической точке кристаллизуются сразу и свинец и олово. Здесь и поблизости (светлые участки диаграммы) твердых растворов нет. Есть только перемешанные кристаллики обоих чистых компонентов.
Могло показаться, будто «раствор» здесь, применительно к сплавам, — не более, как удачно подобранная метафора. Отнюдь нет! Твердые растворы — вполне строгий термин, введенный еще Вант-Гоффом для обозначения однородных кристаллических тел переменного состава.
Да, у твердых растворов и впрямь совсем не твердый состав. Даже внутри одного и того же слитка. Это понятно, если вспомнить, что состав остаточного расплава, из которого выкристаллизовываются твердые растворы, непрерывно меняется по мере выделения чистых компонентов.
Вот почему здесь бессильны законы Пруста — Дальтона.
Но всегда ли? Вернее, для всех ли систем?
Памятуя об «особых точках» Менделеева в обычных растворах, мы не блеснем особой проницательностью, если сразу же ответим на вопрос отрицательно.
Ученые давно уже подозревали, что в сплавах могут образовываться и химические соединения. Иными словами, составные части системы способны взаимодействовать в стехиометрических пропорциях. Но как определить состав этой новой фазы? Одним химическим методам это едва ли под силу. Часто сплав анализируют, растворяя его поначалу в кислоте. Но так не выяснить состава каждой фазы в отдельности: твердых растворов, чистых компонентов и продуктов их взаимодействия. Все эти разношерстные кристаллики перейдут в водный раствор, образовав однофазную систему с первоначальным соотношением компонентов. Очевидно, надо бы предварительно каким-то неведомым способом рассортировать мельчайшие кристаллики, перемешавшиеся в массе слитка. Но каким? Выковыривать их под микроскопом из шлифа? Дикое, нелепое занятие! Нелепое даже в том случае, если бы нам успешно удалась подобная процедура. Ведь раскладывать кристаллики по кучкам мы должны, руководствуясь определенным отличительным признаком. По химическому составу. Но мы его не знаем! Сакраментальная ситуация, которая по-латыни называется «циркулюс вициозус», а в народе — просто «заколдованным кругом»: чтоб узнать состав, надо разделить фазы, а чтоб разделить фазы, надо знать состав. Причем зачастую состав бывает переменным, как, например, в случае твердых растворов.
Где же выход? А выход есть! Его подсказывают нам геометрические приемы физико-химического анализа.
Хотите полюбоваться горным ландшафтом? Пожалуйста.
Мы убедились уже, как чутко реагирует равновесная система на малейшие изменения условий. Изменяя и измеряя их (скажем, температуру), мы вызываем фазовые превращения. Но ведь эти метаморфозы внутри системы однозначно связаны строгой зависимостью! Гармония подчинена законам алгебры и геометрии: тому свидетельство наша диаграмма. Так неужели же возникновение новой фазы в системе не проявится в виде каких-то «особых точек»?