Глазами Монжа-Бертолле — страница 31 из 41

«Я не предлагаю здесь новую теорию шизофрении, — скромно заключает Сент-Дьердьи. — Я пытаюсь лишь показать, что квантовая механика может подсказать новые подходы к важным проблемам, которые уж так давно зашли в тупик». Да, действительно: дистанция между абстрактными математическими расчетами и постелью больного не столь уж велика!

Свою книгу «Введение в субмолекулярную биологию» автор считает последней. И, словно передавая эстафету новым поколениям, престарелый мэтр квантово-механической биологии обращается к читателю с завещанием:

«Я хотел бы сделать только одно предостережение биологам, которые отваживаются вступать в область физических проблем. Между физикой и биологией есть существенное различие. Физика — это наука о вероятностях. Если какой-либо процесс 999 происходит одним путем и только 1 раз другим, то физик, не колеблясь, скажет, что первый путь и есть истинный. Биология — это наука о невероятном, и я думаю, что в принципе для организма существенны только статистически невероятные реакции. Таким образом, в живом организме становятся возможными реакции, которые кажутся физику невозможными или, во всяком случае, невероятными. Когда была вскрыта гробница Тутанхамона, оказалось, что за 3000 лет его завтрак не окислился. Такова физическая вероятность. Но если бы фараон воскрес и сам съел свой завтрак, то последний сгорел бы очень быстро. Такова биологическая вероятность. Сам фараон должен был бы представлять собой очень сложную и высокоорганизованную структуру ядер и электронов, статистическая вероятность которой близка к нулю. Я не хочу этим сказать, что биологические реакции не подчиняются законам физики. В конечном счете объяснить их должна именно физика, но только окольным путем, который на первый взгляд может показаться совершенно неправдоподобным.

Все это делает взаимоотношения физиков и биологов очень сложными. Биолог зависит от суждения физиков, но вместе с тем он должен быть очень осторожен, когда ему говорят, что то или иное событие или явление невероятно. Если бы я всегда соглашался с вердиктом физиков, то мне пришлось бы бросить это направление моих исследований. Я счастлив, что не сделал этого».

Через все научное творчество Сент-Дьердьи красной нитью проходит мысль: не стоит смущаться ошибками и неудачами при решении больших задач. Автор сам так выразил ее в шутливой форме: «Когда я переехал в Вудс-Холл и начал ходить на рыбалку, я всегда носил с собой огромный крючок. Я знал, что все равно ничего не поймаю, но ведь приятнее не поймать большую рыбу, чем маленькую».

Неизведанное — малонадежная почва. И тому, кто на нее вступает, дано утешаться лишь надеждой, что его ошибки окажутся почетными.

Бесстрашие в научных дерзаниях, свежесть взгляда вопреки культу традиционных представлений — вот к чему зовет Сент-Дьердьи. Этого не занимать нашей молодежи.

В декабре 1961 года — за три года до выхода в свет книжки Сент-Дьердьи — в Тбилиси проходил союзный симпозиум по кибернетике. Всеобщее внимание привлекла работа молодых ученых из Института кибернетики Академии наук Грузии. Вот что было доложено младшим научным сотрудником института Квинихидзе и кандидатом физико-математических наук Чавчанидзе.

Математическая модель клетки… Ее еще нет у биологов. Даже такой, которая напоминала хотя бы планетарную модель атома, предложенную Резерфордом. Не говоря уже о квантово-механической модели. А она нужна. Без нее очень трудно ответить на тысячи вопросов, встающих перед биологами. Как работают клетка и ее отдельные цехи? Каков тот заводной механизм, что автоматически регулирует смену циклов ее жизнедеятельности? Что делает этот крошечный организм устойчивым в его непрерывном изменении? Откуда в нем та строгая, поистине воинская дисциплина, которой подчиняются сложнейшие процессы синтеза молекул, деления и передачи наследственной информации?

Живая клетка — самоуправляющаяся система. В этом смысле она подобна человеческому организму. Однако механизм управления в ней иной. Здесь нет нервных путей, по которым бегут импульсы-сигналы. На уровне клетки роль сигнальных «агентов» играют подвижные группы атомов и молекул.

Регулирование процессов обусловлено динамическим равновесием разных сил, действующих на внутриклеточные структуры. Именно уравновешивание противоборствующих сил, почти как в молекуле водорода, сохраняет систему устойчивой.

Эта общая идея и легла в основу первой клеточной модели, разработанной сотрудниками Института кибернетики.

Описываемая модель не имеет прямого отношения к квантовой биологии. Тем не менее перед нами еще один пример плодотворного сотрудничества биологов и математиков.

Модель напоминала куриное яйцо. Внутри — ядро. Это «желток». И, как желток, ядро охвачено оболочкой. Сверху «белок», тоже обтянутый пленкой. Среда, окружающая клетку, пока не учитывалась. Принималось, что внутри ядра вещество имеет одну вязкость, снаружи — иную. И что внутри клетки находятся положительные и отрицательные ионы, свободно проникающие через оболочку ядра в обе стороны — внутрь и наружу.

«По правде говоря, — признавались тогда авторы, — сейчас еще нельзя определенно указать, какие структуры реальной клетки имеют электрический заряд. По некоторым новейшим данным, заряженные частицы внутри клетки существуют. Более подробно об этом говорить пока невозможно. В дальнейшем совместные усилия физиков, биологов и кибернетиков, несомненно, позволят выяснить, какова роль зарядов внутри клетки».

Роль зарядов внутри клетки… Уже в те дни интуиция вела грузинских ученых к выводам, которые с таким блеском и с такой глубиной формулирует ветеран квантовой биологии Сент-Дьердьи! В самом деле: донорно-акцепторная связь в комплексах с переносом заряда — разве это не взаимодействие «заряженных частиц»?

Чтобы не усложнять чересчур математические расчеты, авторы ввели в модель всего десять пар разноименных ионов. Ввели по методу Монте-Карло. (Рулетка знаменитого казино увековечила себя в названии математического приема, когда приходится прибегать к розыгрышу, чтобы отыскать случайное распределение отдельных элементов в системе.) И, как бы случайно ни располагались ионы, в любом случае «центры тяжести» положительной и отрицательной групп зарядов не совпадали. Иными словами, система являла собой своего рода диполь. Естественно, что «полюса» стремились сблизиться. Но им мешало противодействие беспорядочного теплового движения ионов. Кроме того, в игру вступала тормозящая сила вязкой внутриклеточной среды.

Вся эта предельно упрощенная и тем не менее сложная картина взаимодействий описывалась математическими уравнениями. Решение их должно было показать, будет ли существовать такая система сама по себе, без всякой программы, без внешнего регулятора, а лишь за счет внутренних сил?

И вот модель запущена. Что-то она покажет?

Тепло разгоняет частицы в стороны, в беспорядке перемешивает их. Случайные встречи одноименных ионов заканчиваются довольно грубым взаимным отталкиванием, разноименных — дружескими объятиями. Казалось бы, восторжествовала полная анархия. Ан нет, в определенный момент направленные силы кулоновского тяготения между полюсами увеличиваются, движение вновь течет по некоему жизненному руслу. И не было случая, чтобы систему настигла «смерть» — чтобы клеточный «диполь» исчез, обратился в нуль, динамическое равновесие сменилось статическим.

Драматический конфликт между силами порядка и хаоса, дезорганизации и дисциплины — таково «жизненное содержание» первой клеточной модели.

Разумеется, модель грузинских математиков отдает классицизмом биологии XIX века. Шарики-заряды, кулоновские силы, броуновское движение — как далеко ушли от этого представления квантовой биологии! Активирующие кванты, уровни энергии, зоны проводимости, перенос заряда, слабые токи — до этого еще не дошел черед. Но, как говорится, лиха беда — начало. Пусть модель проста, быть может, даже примитивна — какие математические расчеты сложных систем не грешат упрощенчеством? Пусть она далека от реальности, быть может, даже наивна — разве модель Резерфорда, величайшее откровение своего времени, не оказалась впоследствии лишь грубо сработанным и вдобавок кривым зеркалом микромира?

Самое примечательное или, лучше сказать, симптоматичное — в другом. Проснулся обоюдный интерес у математиков и биологов. Биологи начинают убеждаться, что без помощи физиков и химиков, без числа и меры им ни шагу ступить в неизведанное. А представители точных наук, со своей стороны, готовы призвать на подмогу всю мощь современного математического аппарата, чтобы проникнуть в самые сокровенные тайны молекулы, кристалла, клетки.

Гнеденко: «Я убежден, что некоторое недопонимание между биологами и математиками проистекает в значительной степени оттого, что мы работаем разобщенно».

Вот что пишет — известный советский математик член-корреспондент АН СССР Борис Владимирович Гнеденко: «Я не считаю, что уже имеется необходимость создавать особую дисциплину „математическая биология“ наподобие „математической физики“. Но для меня нет сомнений в том, что назрела пора, когда коллективы математиков и биологов должны начать совместную работу над разрешением коренных биологических проблем — работу, в которой математик станет вникать в суть биологических явлений, а биолог — в идейные, а не чисто вычислительные возможности математических методов».

Проникнуть в тайны микромира, чтобы еще лучше сделать жизнь человека. И это не просто красивые слова. Вспомните энергетику и медицину!

Впрочем, только ли медицине сулит богатые плоды великий триумвират наук — математики, физики и химии? Только ли перед энергетикой распахивает он неохватные горизонты?

Ну, конечно же, нет! Теория цветности и химия красителей. Лазеры, в том числе полупроводниковые. Тайны мельчайших кирпичиков мироздания — элементарных частиц. Не сыскать такой области, где бы квантовая механика пришлась не ко двору. Но нельзя объять необъятного: обо всем не расскажешь.