Голубая точка. Космическое будущее человечества — страница 30 из 64

Расплавленные породы (магма) поднимаются по трещинам в окружении более тяжелой и твердой земной коры. Можно представить себе обширные подземные полости, наполненные сияющей красной клокочущей вязкой жидкостью, которая фонтаном вырывается на поверхность, если только представится возможность и обнаружится подходящий канал. Магма, которая называется лавой, если вытекает из кальдеры на вершине вулкана, действительно поступает из-под земли. Души грешников в ней пока не обнаружены.

Когда вулкан полностью сформируется в результате последовательных излияний лавы и она больше не будет скапливаться в кальдере, вулкан становится похож на самую обычную гору – он медленно разрушается под действием ветра и воды, а также в конечном итоге под влиянием дрейфа тектонических плит. «Сколько может простоять гора, прежде чем ее смоет море?» – спрашивал Боб Дилан в своей балладе «В дуновении ветра». Ответ зависит от того, о какой планете мы говорим. Для Земли срок жизни горы обычно составляет около 10 млн лет. Поэтому горы, как вулканические, так и обычные, должны формироваться примерно за такое же время; в противном случае Земля повсюду была бы такой же плоской, как Канзас[47]. При извержениях вулканов в стратосферу могут выбрасываться огромные массы вещества – преимущественно в форме мелких капелек серной кислоты. После этого в течение одного-двух лет они отражают в космос солнечный свет и остужают Землю. Такое явление недавно произошло после извержения филиппинского вулкана Пинатубо, а в 1815–1816 гг. достигло катастрофических масштабов в результате извержения индонезийского вулкана Тамбора. Наступил «год без лета», обернувшийся массовым голодом. Извержение вулкана Таупо в Новой Зеландии, случившееся в 177 г., вызвало похолодание на другом конце планеты – в Средиземноморском регионе. Частицы пыли от этого извержения выпали даже во льдах Гренландии. Извержение вулкана Мазама в Орегоне (от которого осталась кальдера, ныне именуемая «озеро Крейтер») в 4803 г. до н. э. вызвало изменения климата во всем Северном полушарии. Именно при изучении влияния вулканических извержений на климат в итоге был открыт эффект ядерной зимы. Такие извержения очень важны для проверки наших компьютерных моделей, выстраиваемых для прогнозирования будущих климатических изменений. Частицы вулканической пыли, попадающие в верхние слои атмосферы, являются одной из причин истончения озонового слоя.

Итак, крупное извержение в каком-нибудь затерянном и малоизвестном уголке мира может оказать глобальное воздействие на окружающую среду. Своим происхождением и эффектами вулканы напоминают, как мы уязвимы даже перед незначительными «чихами» глубинного земного метаболизма и насколько важно для нас понимать, как работает эта подземная топка.


СЧИТАЕТСЯ, ЧТО НА ЗАКЛЮЧИТЕЛЬНЫХ ЭТАПАХ формирования Земли – а также Луны, Марса и Венеры – под ударами мелких небесных тел возникали глобальные океаны магмы. Расплавленные породы заливали существовавшие ранее ландшафты. Это были великие лавовые потопы, когда настоящие цунами текучей красной горячей магмы достигали нескольких километров в высоту. Они вздымались из недр Земли и топили под собой все, что попадалось на пути: горы, каналы, кратеры, может быть, даже последние свидетельства гораздо более ранних и благоприятных времен. Геологический одометр обнулялся. Все имеющиеся свидетельства о поверхностной геологии отсчитываются лишь с момента последнего глобального магматического потопа. Прежде чем остыть и затвердеть, океаны лавы могли достигать глубины в сотни или даже тысячи километров. В наше время, наступившее миллиарды лет спустя, поверхность подобного мира может быть спокойной, неактивной, без малейших признаков современного вулканизма. Либо – как на Земле – могут сохраняться небольшие, но активные отголоски той эпохи, когда вся планета была залита жидкими горными породами.

На заре астрогеологии мы располагали только теми данными, которые можно было получить при помощи наземных телескопов. Полвека шли яростные дебаты о том, какое происхождение имеют лунные кратеры – ударное или вулканическое. Было обнаружено несколько низких холмов с кальдерами на вершинах – практически наверняка это были лунные вулканы. Но большие кратеры, напоминавшие по форме чашу или сковороду и расположенные прямо на поверхности, а не на вершинах гор, явно имели иную природу. Некоторые геологи усматривали в них сходство с сильно разрушенными земными вулканами. Другие – нет. Наилучший контраргумент таков: нам известны астероиды и кометы, пролетающие мимо Луны; иногда они должны попадать в Луну, и на месте столкновений будут образовываться вмятины. За всю историю Луны было выбито множество подобных лунок. Итак, если те кратеры, которые мы видим, – не ударные, то где же ударные кратеры? В настоящее время непосредственные лабораторные исследования лунных кратеров позволяют заключить, что практически все они имеют ударное происхождение. Но четыре миллиарда лет назад этот маленький мир, сегодня почти мертвый, пузырился и клокотал под действием первозданного вулканизма, подогреваемый давно истраченным внутренним жаром.

В ноябре 1971 г. аппарат НАСА «Маринер-9» прибыл к Марсу и обнаружил, что планета охвачена глобальной пылевой бурей. Практически единственными деталями, которые удавалось различить, были четыре круглых пятна, выступавших из красноватой пелены. Но у них была странная особенность: в вершинах просматривались отверстия. Когда буря стала стихать, не осталось никаких сомнений, что мы видим четыре гигантских вулканических конуса, возвышающихся над облаками пыли, и каждый из них увенчан большой кальдерой.

После бури стали понятны истинные размеры этих вулканов. Самый крупный из них, заслуженно названный Олимпом в честь горы, на которой обитали древнегреческие боги, достигает в высоту 25 км. По сравнению с ним кажутся карликами не только крупнейшие земные вулканы, но даже высочайший пик Эверест, возвышающийся на 9 км над тибетским плато. На Марсе около 20 больших вулканов, но ни один из них не сравнится по масштабам с Олимпом, который примерно в 100 раз превосходит по объему крупнейший земной вулкан Мауна-Лоа, расположенный на Гавайях.

Подсчитав накопившиеся на склонах вулканов мелкие ударные кратеры (они образуются от попаданий мелких астероидов и значительно отличаются от кальдер на вершинах), можно оценить возраст этих гор. Некоторые марсианские вулканы возникли несколько миллиардов лет назад, хотя ни один из них не сравнится по возрасту с самой планетой, которой около 4,5 млрд лет. Отдельные вулканы, в том числе Олимп, сравнительно молоды – возможно, им всего лишь несколько сотен миллионов лет. Ясно, что в ранней марсианской истории происходили мощные вулканические извержения и Марс должен был обладать гораздо более плотной атмосферой, чем сегодня. Как могла выглядеть эта планета, если бы мы посетили ее в те времена?

Некоторые вулканические потоки на Марсе (например, в районе борозд Цербера) сформировались не более 200 млн лет назад. Поэтому я даже не исключаю – хотя это пока все равно недоказуемо, – что гора Олимп, высочайший из настоящих вулканов, открытых в Солнечной системе, когда-нибудь вновь может проснуться. Вулканологи, люди терпеливые, наверняка будут только рады такому событию.

В 1990–1993 гг. зонд «Магеллан» отправил на Землю удивительные данные о ландшафтах Венеры. Планетологи смогли вычертить карты почти всей планеты с разрешением примерно до 100 м – таково расстояние между воротами на поле для американского футбола. «Магеллан» передал в ЦУП больше информации, чем все остальные планетные миссии вместе взятые. Поскольку большая часть океанского дна на Земле остается неисследованной (если не считать до сих пор засекреченных данных, собранных ВМФ США и СССР), сегодня о топографии поверхности Венеры известно больше, чем о рельефе какой-либо другой планеты, в том числе Земли. Геология Венеры во многом не имеет аналогов ни на Земле, ни где-либо еще. Астрогеологи дали этим элементам ландшафта названия, но это не означает, что мы полностью понимаем механизмы их формирования.

Поскольку температура на поверхности Венеры составляет почти 470 ℃, горные породы там гораздо ближе к точке плавления, чем на Земле. Породы начинают размягчаться и текут на гораздо меньшей глубине, чем это происходит на Земле. Вероятно, именно поэтому многие геологические образования на Венере кажутся пластичными и деформированными.

Планета покрыта вулканическими равнинами и высокогорными плато. В рельефе встречаются такие формы, как вулканические конусы, вероятно, щитовые вулканы и кальдеры. Во многих местах заметно, что там изливались огромные потоки лавы. На равнинах выделяются детали рельефа размером 200 и более километров, которые с легкой руки были названы «клещами» и «арахноидами» (то есть «паутиноподобными формами»), так как они представляют собой круглые впадины, окруженные концентрическими кольцами, а во все стороны от них радиально расходятся длинные и тонкие поверхностные трещины. Странные приплюснутые «плосковершинные купола» – такие формы рельефа на Земле отсутствуют, но, возможно, это разновидность вулканов – могли образоваться из густой и вязкой лавы, равномерно растекающейся во всех направлениях. Во множестве встречаются и лавовые потоки с более неправильными очертаниями. Любопытные кольцевидные структуры, названные «венцами», могут достигать до 2000 км в поперечнике. Хорошо заметные потоки лавы на душной и жаркой Венере хранят целый букет геологических тайн.

Самыми неожиданными и странными формами рельефа являются извилистые русла с меандрами и излучинами, очень напоминающие земные речные долины. Самые длинные из этих русел протяженнее величайших рек Земли. Но на Венере слишком жарко, чтобы там могла существовать жидкая вода. По отсутствию ударных кратеров можно заключить, что атмосфера была очень плотной и вызывала такой грандиозный парниковый эффект на протяжении всего существования современной венерианской поверхности. (Если бы она была гораздо тоньше, то астероиды средних размеров не сгорали бы при входе в атмосферу и оставляли бы на Венере заметные вмятины.) Лава, стекающая в низины, действительно прокладывает извилистые русла (иногда подземные, что приводит к обрушению кровли над руслом). Но даже при венерианских температурах лава постепенно отдает тепло, остывает, замедляется, густеет и останавливается. Затем затвердевает. Лавовые русла не могут достичь и 10 % длины от наблюдаемой протяженности венерианских каналов прежде, чем поток лавы затвердеет. Некоторые астрогеологи полагают, что на Венере могут образовываться особые жидкие, водянистые, невязкие виды лавы. Но эта гипотеза, не подкрепленная никакими данными, в сущности – наше признание в собственном невежестве.