На заре развития электронных компьютеров перед учеными и инженерами остро стояла, увы, слишком знакомая всем проблема – где достать деньги на создание машин. И когда в середине 1947 г. Группа сотрудников Иллинойского университета убедила администрацию выделить средства на разработку и изготовление компьютера, это было немалое достижение. Но выделенная сумма в 110 тыс. долл. оказалась куда ниже той, на которую они первоначально рассчитывали. Один из членов группы, профессор электротехники Артур Л. Сэмюэль, выдвинул весьма любопытное предложение: построить небольшой компьютер и обучить его играть в шашки. Сэмюэль утверждал, что столь небывалый эксперимент в области обучения машин может получить широкую известность, а в результате, быть может, возникнут новые источники финансирования от правительственных и частных организаций, что позволит продолжить работы над основным проектом.
Сэмюэль выбрал шашки, а не шахматы – которые предпочитали последующие исследователи в области, получившей в дальнейшем название «искусственный интеллект», – потому, что правила этой игра намного проще и требуют значительно меньшего объема памяти. «К тому же… следующей весной чемпионат мира по шашкам предполагалось провести в соседнем городке Канкаки, – вспоминал позднее Сэмюэль. – Мы думали, что шашки – простая игра. По окончании состязаний мы намеревались бросить вызов новому чемпиону и обыграть его, что привлекло бы к нам всеобщее внимание. Как мы были наивны!» В те же годы Сэмюэль, мягкий, всегда опрятный человек без малого пятидесяти лет, отдавал все силы преподаванию и, кроме того, руководил лабораторией электронных приборов, которой было поручено разработать элементы для новой машины. Теперь он взял на себя еще одну нагрузку – составление программы для игры в шашки. Это был совершенно новый «материк». Перед первой мировой войной и во время ее Сэмюэль работал инженером-исследователем и в фирме «Белл телефон лабораторис», став общепризнанным авторитетом в области электронных ламп, а компьютеры первого поколения были ламповыми. Но он был абсолютным профаном в программировании. Кстати говоря, он не очень разбирался и в шашках, даже не любил эту игру.
Неудивительно, что чемпионат по шашкам в Канкаки обошелся без участия шашечного компьютера Сэмюэля. Но, работая над провалившимся проектом, Сэмюэль узнал достаточно о компьютерах и программировании, чтобы в расцвете карьеры бросить все и целиком отдаться новой страсти, тому, что впоследствии стало центральным звеном исследований по ИИ – построению машин, способных обучаться на собственно опыте.
Так называемые «умные» системы стали чересчур самоуверенными. Они убеждены, будто знают, что для нас лучше. Но их интеллект ограничен. И это ограниченность фундаментально свойства: машина по определению не может знать все факторы, которые человек учитывает при принятии решений. Это, впрочем, не означает, что нам следует отказываться от помощи «умных машин». В то же время, поскольку машины берут на себя все больше и больше, их нужно социализировать – они должны стать более коммуникабельными и лучше понимать пределы своих возможностей. Только тогда они смогут приносить настоящую пользу. Именно этой теме и посвящена моя книга.
Когда я только начинал над ней работать, я думал, что ключевым в социализации машин является создание более совершенных систем, способных к диалогу. Но я ошибался. Для конструктивного диалога нужны общие знания и опыт. Нужно уметь учитывать обстановку и контекст, предшествующие события, а также множество различных целей и мотивов, которыми руководствуются участники процесса. И в этом, как я теперь понимаю, заключено одно из главных ограничений, не позволяющих современным технологиям полноценно взаимодействовать с человеком. Если даже людям непросто найти полное взаимопонимание, откуда оно возьмется у людей и машин?
Для успешного взаимодействия с техникой нам нужно относиться к ней как к животным. Несмотря на то, что и люди, и животные обладают интеллектом, мы – разные виды, с разным взглядом на мир и разными способностями. Порой мы должны слушаться животных и машин, порой – они нас.
Мировая фантастика очень много писала о том, что грядущий искусственный интеллект вытеснит человека и займет главенствующее место в жизни планеты. Почему-то чаще всего этот переход выглядел как война людей с роботами. Трогательно, как все наивное…
Возможно, на каком-то этапе будет существовать симбиотическая связь между человеком биологическим (правда, генетически модифицированным) и искусственным сетевым интеллектом. Такая же симбиотическая связь, какая существует между человеком и микрофлорой в его кишечнике. Люди не могут жить без микрофлоры, микрофлора не может жить вне человека. Но кто при этом «главный» – микробы или человек?
В следующем симбиозе главными будем не мы, это точно. Главный будет Он.
Значит ли это, что машины победят людей и поставят их себе на службу, будут всячески контролировать? Нет, конечно. Искусственный интеллект будет контролировать человечество не больше, чем вы контролируете свои бактерии в кишечнике. Умный человек о своем здоровье заботится. Планетарный мозг тоже будет заботиться о своих «микроорганизмах» – людях. А мы будем заботиться о Нем, потому что не сможем жить вне Его опеки. Симбиоз!
Глава 12. ЭВМ: череда поколений
– Твое имя тут есть? – спросил государь.
– Никак нет, – отвечает левша, – моего одного и нет.
– Почему же?
– А потому, – говорит, – что я мельче этих подковок работал: я гвоздики выковывал, которыми подковки забиты, – там уже никакой мелкоскоп взять не может
В октябре 1981 года в мире микроэлектроники произошло значительное событие. На конференции в Токио была впервые обнародована – она позднее получила неофициальное название «Японский вызов» – десятилетняя программа научно-технических работ. Ее главной целью было – создать к началу 90-х годов XX века компьютеры пятого поколения, имеющие быстродействие 100 миллиардов операций в секунду против 100 миллионов, характеризующих машины четвертого поколения.
Это сообщение тогда взбудоражило умы. В США, странах Европы, СССР были приняты ответные меры, перед разработчиками новых типов ЭВМ были поставлены еще более серьезные задачи. Весь мир дружно заговорил о компьютерах пятого поколения. Почему?
Потому что японцы надеялись, что их машины приобретут способность «слушать», «понимать» устную разговорную речь, «говорить» с людьми и «отвечать» на вопросы, изложенные простым языком. Они смогут мгновенно переводить с одного языка на другой, им будут доступны «видение» и «понимание» смысла визуальной информации – карт, фотографий, печатного и рукописного материала. Они смогут самостоятельно разыскивать нужную человеку информацию, затерянную в хранилищах знаний, наконец, они смогут делать логические заключения, обосновывать свои решения, строить гипотезы и даже учиться.
Это, видимо, будет первое поколение по-настоящему «разумных» компьютеров.
12.1. ЭНИАК, запоздавший и своевременный
Рассказ о компьютерах, их истории можно было бы начать многими способами. И с доисторических далей – с первых арифметических упражнений людей на счетах (их называли суан-пан в Древнем Китае, абак – в Древней Греции), – и с эпохи механических счетных устройств (машины Паскаля, Лейбница, Беббиджа). Но, нам кажется, лучше вести отсчет значительных дат с 1943 года, от того момента, когда взялись наконец строить первую электронную вычислительную машину.
Шла вторая мировая война. Надо было спешно создать устройства для расчета баллистических таблиц, что облегчило бы стрельбу по самолетам и бомбометание.
Работа велась в США, в Пенсильванском университете, в обстановке чрезвычайной секретности. 10 инженеров, 200 техников и большое число рабочих день и ночь трудились над проектом, получившим название Электронного цифрового интегратора и вычислителя, по-английски это пишется так: Electronics Numerical Integrator and Computer, сокращенно по первым буквам ENIAC или по-русски ЭНИАК. Добавим еще, что последнее слово в названии – computer (компьютер) – прижилось и стало синонимом, вторым именем для любой ЭВМ.
Ну и чудище было создано! Весила первая ЭВМ 30 тонн. А площадь занимала чуть ли не 150 квадратных метров.
На старых фотографиях можно увидеть громадный зал. Его стены сплошь уставлены какими-то шкафами – это и есть ЭНИАК. Кое-где тянутся кабели с проводами. Шкафы покрыты множеством переключателей, изрешечены стеклянными циферблатами, за которыми затаились стрелки приборов…
Этот динозавр электроники потреблял мощность около 150 киловатт электроэнергии, ее хватило бы небольшому заводу. И состоял ЭНИАК из 18 тысяч электронных вакуумных ламп и 1500 реле. Строительство первой ЭВМ затянулось. Оно было закончено уже после капитуляции Японии. Веского слова в войне произнести ЭНИАКу не удалось.
Электронная вакуумная лампа – вот основная деталь, которую использовали при создании ЭНИАКа. Это основа и соль всего дела. Если бы не лампы, если бы ЭВМ тогда была бы построена на механических компонентах, то эта машина должна была бы быть размерами с… небоскреб! И ответов от такого чудища нужно было бы ждать годы. Лампы же позволили ЭНИАКу давать ответы через минуты.
Вакуумные лампы – это было лучшее, чем располагала техника тех, теперь уже далеких лет. Тогда они вовсю использовались в радиоприемниках. Излучаемые передатчиком радиоволны необыкновенно мощны, но, когда они, обегая земной шар или рассекая просторы космоса, проходят большие расстояния, их сила может снизиться в миллионы раз. Этот шепот радиоволн нельзя было бы расслышать, если бы не электронные лампы. Они усиливали электромагнитные послания настолько, что сигналы вновь становились достаточно мощными, способными привести репродуктор приемника в действие и дающими уже слышимый звук.
Однако вакуумные лампы были громоздкими (и первые радиоприемники достигали величины комода). Инженеры всячески пытались их усовершенствовать, желая прежде всего эти лампы уменьшить. Постепенно удалось наладить выпуск ламп-малюток, высотой всего в 2–3 сантиметра. Трудно сказать, до каких пор дошла бы эта миниатюризация, если бы… если бы не возникло новое чудо техники – полупроводники.
12.2. Серебряный юбилей транзистора
Когда легендарный Гулливер, проснувшись, увидел разгуливающих по нему лилипутов, он ничуть не удивился миниатюрным размерам своих тюремщиков. Так и мы не удивляемся электронным лилипутам наших дней: карманным радиоприёмникам, переносным батарейным телевизорам и прочим чудесам электроники, возможность которых обеспечили нам транзисторы.
Если из химически чистого вещества – германия или кремния – изготовить кристалл со строго заданным количеством нужных примесей, введенных в его состав, то можно получить устройства, способные делать все то же, что делали прежде радиолампы.
Эти замечательные кристаллы-усилители назвали «транзисторами», потому что они передают (ТРАН-сфер – так звучит соответствующее английское слово) электрический сигнал через тело, которое в обычных условиях было бы сопротивлением (реЗИСТОРом).
Транзисторы, переняв все функции радиоламп, освоив все лучшее, что они умели делать, смогли избавиться и от всех их недостатков. Прежде всего им не нужен был вакуум как изолятор. Ведь кристалл сам по себе не проводит электрический ток. Так отпала необходимость в дорогостоящем вакууме (его надо создать!) и хрупком стекле.
Теперь о долговечности транзисторов. Лампы быстро перегорали (малейшая трещинка нарушала вакуум, испарение металлических нитей резко усиливалось, они быстро выходили из строя), полупроводники же могли работать практически неограниченное время.
Еще достоинство: транзисторы работали при комнатных температурах, не нуждались в разогреве. А люди старшего поколения помнят, как бесконечно тянулось время, пока «грелись лампы», как долго надо было ждать, когда радиоприемник наконец заговорит. Потому-то транзисторы и могут работать на слабом токе, с напряжением всего в несколько вольт (лампы требовали ста вольт и выше), отчего им достаточно энергии маломощных батареек и других слабых источников энергопитания.
Но, пожалуй, главный козырь транзисторов – их миниатюрность, уже первые из них не превышали величины булавочной головки. Объясняется это тем, что, как изолятор, кристаллическое вещество намного эффективнее вакуума, что и позволяет размещать различные компоненты транзистора на микроскопических расстояниях друг от друга.
Все перечисленные и многие другие качества транзисторов сделали их незаменимыми для техники. Именно транзисторы превратили ЭВМ из мастодонтов, редких и громоздких зверей, в существа, которые могли уже разместиться на письменном столе, они вскоре начали выпускаться серийно.
В 1973 году мир отмечал серебряный юбилей транзисторов. Ученые и популяризаторы науки и техники в пышных речах-статьях возглашали хвалу этому чудесному изобретению. Предлагалось, между прочим, срочно создать музей электроники, где можно было бы разместить и показать все образчики ЭВМ, все их поколения: на лампах – первое, на транзисторах – второе…
Увы, в те годы (а ведь с тех пор прошло не так-то уж много лет!) хвастать еще было особенно нечем. Если бы организаторы такого музея вознамерились, скажем, создать макет компьютера, равного по своим возможностям – хотя бы внешним! – человеческому мозгу, всем его миллиардам нейронов, заменив их даже не лампами, а транзисторами, им бы пришлось изрядно потрудиться. И прежде всего сильно задуматься о поисках места для такого экспоната. Хотя такая модель мозга не заняла бы, как в 50-е годы, территории, соизмеримой с размерами Нью-Йорка или Токио, все же и с полупроводниками она бы, как говорится, не влезла ни в какие ворота!
Создать компьютер с числом элементов, равным числу нервных клеток головного мозга человека, и чтоб он был способен разместиться в объеме черепной коробки? Фантастика? Да, но только для тех лет. В конце 80-х годов прошлого века это была уже вполне конкретная цель, которые стали ставить перед собой разработчики ЭВМ. И в этом деле все свои надежды они связывали уже со словами «интегральные схемы».
12.3. Как муха превратилась в слона
Существует англосаксонский вариант лесковского Левши. Будто бы некий мастер-виртуоз послал другому булавку, на ее головке он выгравировал слова: «Как тебе это нравится?». Последовал ответ: «Ничего особенного». Написано это было на той же булавке, но внутри буквы «о» в слове «это».
Эта притча невольно приходит на ум, когда вспоминаешь недолгую историю развития микроэлектроники. Череда поколений превратила ЭВМ в карликов, низвела их узлы до микробных размеров.
Вакуумные лампы сменили полупроводники-транзисторы. Переход к интегральным схемам (разработчики предпочли сокращение ИС) знаменовал приход третьего поколения ЭВМ. Это уже было истинно гравировальное искусство – размещать на крохотных (теперь они почти могут пройти сквозь игольное ушко) микрокристалликах кремния как можно больше транзисторов-деталей.
Собственно, тут-то и занялась заря эры микроэлектроники.
Начиная с 60-х годов прошлого века каждый год количество отдельных электронных элементов на чипе (так назвали западные специалисты микрокристаллы с нанесенными на них большими – БИС – и сверхбольшими – СБИС – интегральными схемами, они условно характеризуют четвертое поколение компьютеров) примерно удваивалось. И к концу века степень интеграции выросла до немыслимых пределов: до 105–106 элементов на одном чипе.
Специалисты считали, что подобные суперчипы дадут возможность вскоре воплотить все качества современного большого компьютера в одном устройстве размером со спичечную головку!
О фантастичности достижений технологов говорило то, что на кремниевой пластинке 5х5 миллиметров (клеточка арифметической тетради) удавалось выложить мозаику деталей, которых хватило бы для создания сотни телевизоров!
Темпы развития микроэлектроники потрясали. Английский ученый К. Эванс тогда подсчитал, что, если бы автомобилестроение развивалось так же, как микроэлектроника, то современный «роллс-ройс» стоил бы всего 1,35 фунта стерлингов, причем ему бы хватило четырех с половиной литров бензина на дорогу в 3 миллиона миль. Наконец, дюжина таких автомашин могла бы разместиться… на спичечной головке.
Так рассуждали люди ученые. Они привыкли иметь дело с цифрами. Те же, кто хотел бы представить себе компьютерное хозяйство планеты глазами наивного ребенка, заметили бы иное. Они отметили бы, что магия миниатюризации буквально превратила муху в слона.
Чтобы воочию убедиться в этом, достаточно полистать популярные журналы последних десятилетий XX века. Там непременно встретишь и муху. Маленькая рядом с электронной вакуумной лампой, она – видимо, фотографов и художников прельстили огромные фасеточные глаза, задорные усики и стеклянный блеск крыльев – заметно прибавляет в размерах, если ее посадить рядом с интегральной схемой.
Да это настоящий циклоп! Чтобы разглядеть муху, достаточно невооруженного глаза, но чтобы проследить все хитроумие переплетений линий-путей для бегущих по ним электронов на микросхеме – необходим микроскоп. Да не простой, а электронный!
12.4. От станков до кофемолок
Для многих крупных фирм США, Японии, стран Западной Европы (над всем этим ломали головы и в стране СССР) миниатюризация – насущная забота. Создать суперчипы с миллионом транзисторов на одном кристалле – вот заветная мечта ученых и технологов. Зачем?
Экономится не только вес, габариты, не только минимизируется потребляемая мощность энергии, не только увеличивается надежность элементов (применяя сверхбольшие интегральные схемы, мы практически сможем дублировать все электронные схемы для того, чтобы компьютер продолжал работу и в том случае, если какая-либо его часть выйдет из строя). Уменьшение размеров не только дает простор для автоматизации производства ЭВМ, позволяет поставить это дело на поток. Главная выгода от миниатюризации все же в другом – резко уменьшается стоимость компьютеров. По оценкам (конец прошлого века) английских специалистов. тогда микрокомпьютер стоил (в пересчете на советские деньги) около сотни рублей, в то время как в 50-е годы сравнимые с ним по рабочим характеристикам устройства стоили миллионы.
Дешевизна открывает дорогу широкому распространению компьютеров. В 1975 году во всем мире существовало всего 150 тысяч ЭВМ. А к концу прошлого века только в США количество микрокомпьютеров приблизилось к сотне миллионов. Они становились столь же распространенными, как радиоприемники и телевизоры.
Как и где их используют? МикроЭВМ вовсе не обязательно должна быть вычислительной машиной в собственном смысле этого слова. Она может просто представлять собой микропроцессор, имеющий, кроме набора интегральных схем, «мозга», занятого обработкой информации, еще блок памяти, где информация накапливается, и логическое устройство, предназначенное для выполнения определенных задач. Поэтому соответствующим образом ориентированная микро ЭВМ может быть встроена буквально в любую вещь: электроплитку, стиральную машину, автомобиль, радиоприемник, кассовый аппарат, духовку, светофор. И все эти устройства – от станков до кофемолок – приобретают толику электронного разума, становятся благодаря встроенным в них «чипам» умнее.
Пришло время, и «разумный» телефон стал будить вас по утрам, напоминать о заботах дня, о сроках, по первой просьбе соединять с абонентами, отвечать в ваше отсутствие на телефонные звонки. «Разумный» телевизор будет запоминать все ваши зрительские пристрастия и пожелания. В должный момент он включит нужный канал, повторит те передачи, которые вам не удалось увидеть или же которые вам хочется посмотреть еще раз вместе с друзьями. Одаренный «интеллектом» кухонный комбайн, получив задание, сам подберет меню, сам в нужной последовательности включит кухонное оборудование и сам приготовит пищу по новомодным рецептам, по всем строгим требованиям гигиены и тонкого вкуса.
Такие умные вещи уже начинают создавать. Японский телевизор фирмы «Toshiba» может сам выключаться в заданное время, скажем, ровно в полночь. При этом обязательно мягким голосом пожелает своим хозяевам спокойного сна. «Заметив» – специальное ультразвуковое приспособление, – что ты сидишь слишком близко к экрану, телевизор тут же произносит заученную сентенцию: «Чтобы сберечь зрение, пожалуйста, отсядьте подальше». Обнаружив, что перед ним никого нет, сам себя выключит, предварительно произнеся печальным тоном слова: «Теперь я должен погаснуть».
Со временем в каждом доме, считали эксперты к закату XX века, можно будет установить периферийное устройство, связанное с большой вычислительной машиной и через нее – с учреждениями, банками, магазинами. Любую покупку можно будет сделать простым нажатием соответствующих кнопок на пульте этого периферийного устройства (внешний вид облюбованного костюма, сумочки можно будет оценить, вызвав их изображение на экране дисплея). И покупку на следующий же день доставят покупателю, а с его сберкнижки сделают необходимый вычет. Лет тридцать назад все подобное казалось далеким будущим, ныне же мы этим активно пользуемся.
Резко изменится характер многих профессий. Работу можно будет выполнять у себя дома. Преобразятся города, так как необходимость ежедневно ходить на службу станет делом прошлого. Изменится многое: наука, искусство. Уйдут в небытие многие традиционные отрасли промышленного производства, появятся совершенно новые, невиданные прежде специальности, многое будет пересмотрено и в человеческих отношениях…
12.5. Даже тень от пылинки
Лесковский Левша все надежды своего искусства возлагал на свою ловкую в работе левую руку, на свое умение крошечными молоточками забивать уже совсем неразличимые гвоздики. Даже «мелкоскопа», по бедности, он не имел.
Сегодняшние левши, выковывающие интегральные схемы, так работать уже не могут. Пальцы человека оказываются слишком грубым инструментом. Им не под силу связывать проводящими ток полосками несметное количество миниатюрных транзисторов, резисторов, триодов, диодов, размещенных на полупроводниковых кристаллах, которые сами-то размером с ноготь мизинца.
Очень подивился бы Левша, понаблюдав обстановку, в которой создаются чипы. Помните, как свистовые, послы казака Платова, сорвали крышу маленького домика, где тюкали молоточками оружейники? Как вверх поднялась «потная спираль» воздуха такой густоты, что послы Платова попадали в обморок?.. А интегральные схемы изготавливают в специальных помещениях со строжайшим контролем чистоты воздуха.
И потому персонал одет так, словно это нейрохирурги. В рабочие помещения категорически запрещается вносить еду и питье. Главные операции идут под электронным микроскопом. Обстановка в этих цехах-лабораториях такова, словно бы тут действительно совершают хирургическую операцию на булавочной головке.
Вновь подчеркнем: мало найдется мест, более чистых, чем завод полупроводников. Потому что малейшая пылинка может испортить чип. Оттого-то рабочие и носят белые комбинезоны и стерильные маски. А воздух постоянно фильтруется, благодаря чему в одном его литре содержится всего лишь около четырех частиц-пылинок, имеющих размер полмикрона – в тысячу раз меньше, чем в операционной больницы.
Это сейчас. А в будущем при производстве суперчипов-миллионников, печатание схем на кремниевых пластинках должно совершаться в атмосфере настолько антисептической, что плотность пылинок должна уменьшиться еще в сотни раз.
Но такой обстановки (сверхчистота тоже может стать опасной для человека!) люди уже не смогут перенести. И придется чипам изготавливать чипы. С задачей может справиться только сам компьютер.
Технология ИС (интегральной схемы) начинается с проектирования светового изображения схемы на светочувствительную пленку, покрывающую кремниевый диск. Затем в процессе проявления (методами, схожими с проявлением обычных фотографий) схема отпечатывается на диске.
И вновь необычные заботы – даже тень от микропылинки (а совсем избавиться от пыли невозможно) сможет исказить рисунок: в схеме образуются дефекты. И тем более значительные, чем больше длина волны света. Вот и приходится заменять свет видимый ультрафиолетом, еще лучше – перейти на рентгеновские лучи. Но заманчивее всего выводить узоры сфокусированным пучком электронов.
К сожалению, машины, создающие сверхтонкие пучки электронов (а пучок тем тоньше, чем больше энергия разгоняемых электронов; следовательно, в ход идет уже ускорительная техника – то, что сейчас используется для исследований элементарных частиц), слишком дороги и слишком медлительны, если думать о массовом производстве чипов.
И все же гораздо большие препоны производству ИС возникают по иной причине. Оказывается, мельчайшие частицы любого вещества, достигнув сотни атомных размеров, приобретают совершенно новые свойства. Они, в сравнении с большими кусками того же вещества, ведут себя довольно странно.
Тончайшие полоски алюминия, к примеру, начинают извиваться, как змеи, когда по ним бегут электроны. Ну а это может вызвать короткое замыкание, и части ИС будут соединены уже совсем не так, как этого хотели проектировщики!
12.6. Электронный ветер
За все в этом мире надо платить! Ничто не дается даром. Запах цветов «оплачивает» химическая энергия растений, шум прибоя черпает силы в мощи ветра и волн, вся красота окружающего нас мира имеет истоком энергию идущих к нам от Солнца лучей…
Платить надо и за микроминиатюризацию. И когда затраты станут непомерно высокими, стремление к дальнейшему увеличению числа элементов на чипе может потерять всякий смысл.
Уменьшая размеры ИС, мы обязаны сохранить на некотором приемлемом уровне мощность электрических сигналов. Иначе они будут очень слабыми, просто не смогут быть восприняты. Но это значит, что плотность энергии на единицу площади ИС или на единицу объема кристалла с ростом числа элементов должна будет катастрофически нарастать, превосходя даже… плотность энергии, излучаемой поверхностью Солнца!
Этот момент нашего рассказа очень важен, задержимся еще на деталях.
Дело в том, что в ИС, которые, по сути, представляют собой переключательные устройства (каждый элемент схемы должен быть либо включен, либо выключен), в моменты переключений выделяется тепло. Чем щелканье чаще, тем больше нагревается схема в целом.
Вот так элементарная физика словно ставит преграды создателям суперчипов. Беда в том, что выделяющееся тепло, вызывая перегрев элементов схемы, создает так называемые токи утечки. Возникают паразитные, незапланированные, вредные перекрестные связи между компонентами микросхемы. Схема перестает работать как надо.
И это еще что! Когда плотность тока в пленочных проводниках нарастает, достигая миллиона ампер на квадратный сантиметр поверхности ИС, поднимается тепловая буря. Она несет с собой настоящий «электронный ветер». Электроны начинают «сдувать» атомы с их мест в кристаллической решетке. И микроэлементы выходят из строя.
По всем этим причинам и полагают, что предельный уровень транзисторов в одной микросхеме вряд ли превысит миллиардный рубеж, а размер одного транзистора не может быть снижен до долей микрона (до 10-5 сантиметров). Оно и понятно, скажем, резистор из поликристаллического кремния не может быть меньше микрона уже в силу того, что токи в нем перестанут подчиняться закону Ома.
Конечно, ученые и технологи делают попытки ослабить физические ограничения. Чтобы уменьшить выделяющееся в микросхемах тепло, исследователи переходят от полупроводников к сверхпроводникам, металлам, работающим при очень низких температурах. Погруженная в жидкий гелий (температура – 2040 по шкале Цельсия) сверхпроводящая сетка почти не потребляет мощности. И тут открываются новые горизонты для микроэлектроники.
И все же транзисторный путь микроэлектроники где-то должен себя исчерпать. Похоже, что изготовление более компактных ИС вскоре начнет становиться все дороже. И тогда овчинка не будет стоить выделки!
12.7. Словно бабушкин пирог
Если говорить образно, то сложившуюся в микроэлектронике ситуацию можно изобразить так. Представьте, вы вышли прогуляться в ветреную погоду. Свежо, приятно дышится! Ветер крепчает, что ж, тем приятнее одолевать его сопротивление… Но вот уже поднимается настоящий вихрь, он валит вас с ног, вы задыхаетесь… Тут уж волей-неволей приходится поворачивать, возвращаться домой…
«Вихри» электроники. Вряд ли стоит упорствовать, если обстоятельства сильнее вас. И технологи – изготовители ИС – ищут обходные пути. В проводниках выделяется вредное тепло. А нельзя ли вовсе избавиться от проводящих дорожек? В микромире ведь понятие траектории, как известно, отсутствует, тут частицы – тот же электрон – могут двигаться в том или ином направлении лишь с определенной вероятностью. Таковы уж необычные законы квантовой механики.
Компьютер, действующий на вероятностных принципах? Возможно, он будет создан. Хотя ситуация с точки зрения здравого смысла парадоксальная. Каково было бы водителю, если бы перед мостом он увидел плакат: «Внимание! Мост работает с вероятностью 0,5…» Тут точно можешь быть уверенным лишь в том, что при массовом движении машин в среднем каждый второй грузовик по мосту проедет. Так, что шансы есть, но…
Еще одна оригинальная мысль: заменить в схемах электроны фотонами, квантами света. Заменить электронные сигналы световыми лучами. Вместо электронных ВМ (ЭВМ) построить фотонные ВМ (назовем их ФВМ).
Смысл такой замены? Самый быстродействующий современный транзистор не может изменить своего состояния (включен или выключен, да или нет, 1 или 0 – на языке двоичной системы счисления) менее чем за одну наносекунду (миллиардную долю секунды). А время переключения оптического устройства, аналогичного транзистору (ему уже дали имя, назвали «трансфазором»), составляет всего одну пикосекунду (тысячную часть миллиардной доли секунды). А это значит, что логические схемы из оптических элементов смогут выполнять до триллиона (1000 миллиардов или 1012) операций в секунду, в то время как максимальная скорость электронных переключателей не превышает миллиарда. Можно представить, насколько сообразительнее будет ФВМ в сравнении с ЭВМ-тугодумами!
Сейчас техника только начинает робко произносить новые незнакомые фотонные слова. Сделаны лишь первые попытки заменить микроэлектронику наноэлектроникой. И все же специалисты надеются, что первые образцы ФВМ появятся уже в ближайшие десятилетия.
Другое революционное решение компьютерных проблем – растущие кристаллы.
Жизнь кристалла – а он составляет основу ИС – удивительна. Кристаллы часто сравнивают с живыми существами. И немудрено: ведь они возникают из зародышей, питаются, растут, изменяют свою форму, болеют, отдыхают (металлы), поедают друг друга и так далее. Научиться управлять событиями жизни кристалла – значит научиться выращивать готовые ИС, и уже не плоские, а объемные! В них добиться соединения элементов будет значительно проще.
Однородный кристалл похож на дом с абсолютно одинаковыми квартирами. При сдвиге на одну или несколько его атомных ячеек ничего нового не происходит. Создателям же ЭВМ нужен кристалл-дом с индивидуальной подгонкой каждой квартиры. Они хотели бы иметь «компьютер в кристалле», дом, где каждая квартира-ячейка предназначалась бы для выполнения строго определенной операции.
Ученые разрабатывают специальную технологию, при которой молекулярные слои вещества наносятся на кристаллические подложки с помощью особых устройств – пушек, стреляющих молекулярными пучками. Управление ими в пространстве («рисование», так сказать) и во времени («стрельба очередями») берет на себя, конечно, компьютер. Уже получены кристаллы, которых в природе не встретишь. Чудо-кристаллы! Они слоисты, словно бабушкин пирог. И «архитектуру» их можно менять по желанию. Под определенную логику, под определенные вычисления…
12.8. Вычислительная машина в каждой живой клетке?
У писателя Андрея Платонова (1899–1951) есть чудесная повесть «Эфирный тракт» (окончена в 1930 году). Ее герой, ученый Фаддей Кириллович, считал электроны живыми созданиями, чем-то вроде микробов. Питаются электроны, полагал Фаддей Кириллович, эфиром. И если открыть дорогу эфиру – создать эфирный тракт, – то электроны начнут бешено размножаться. И техники тогда смогут разводить железо, золото, уголь, как скотоводы разводят свиней. Электроны и животные, рассуждал герой повести, одно и то же, поэтому их изучение надо изъять из физики и передать в руки биологов…
Эти фантазии писателя на удивление созвучны устремлениям инженеров и техников, колдующих над интегральными схемами. Ведь они как бы пытаются создать «мыслящие атомы», упорно стремятся вдохнуть жизнь в электронные схемы, промоделировать с их помощью многие функции человеческого мозга.
Микроэлектронщики словно бы хотят стереть грань между живой и неживой материей. Поэтому вовсе не кажутся из ряда вон выходящими представления доктора биологических наук, некогда сотрудника Института проблем передачи информации Академии наук СССР, лауреата Государственной премии СССР Ефима Арсентьевича Либермана (1925–2011) о том, что в каждой живой клетке имеется своя вычислительная машина.
Он назвал ее МВМ – молекулярной вычислительной машиной.
Как-то в беседе с корреспондентом журнала «Наука и жизнь» ученый изложил свои взгляды. Они представляют большой интерес.
«Если бы инженеру пришлось конструировать типичную электронную вычислительную машину, – рассказывал Е.А. Либерман, – из элементов размером в несколько атомов (а именно таковы размеры элементов в клеточной машине), то этот инженер довольно скоро убедился бы, что не может использовать достоинства такой предельной миниатюризации. Потому что соединительные провода, которых в ЭВМ очень много, займут несравненно больше места, чем все ее элементы. Это принципиальная трудность, и ее можно преодолеть только в принципиально новых «беспроволочных» системах вычислительных машин. Именно такую систему нашла природа, создавая молекулярную машину».
Ученый говорил дальше о том, что детали МВМ – различные молекулярные белки – не закреплены на одном месте, как в интегральных схемах. Они свободно плавают внутри клетки и взаимодействуют друг с другом в результате случайных столкновений.
Казалось бы, ненадежное устройство! Однако размеры клеток столь малы, что нужные столкновения происходят достаточно часто. И вот что замечательно: для «перебора адресов», для поиска необходимых связей молекул совсем не требуется дополнительной энергии, правильные связи создаются «бесплатно», за счет энергии теплового (броуновского) движения молекул.
Много замечательных особенностей МВМ перечислил Либерман. Хранилищем памяти (долговременной), полагал он, в такой машине, скорее всего, служат молекулы РНК и ДНК – те вещества, которые у растений, животных и человека передают наследственные черты. Это, по мнению ученого, очень емкие «блокноты», их много и даже в одной клетке на РНК можно записать уйму информации. Либерман высказал свою гипотезу не так давно. Так что МВМ – идея молодая. Она еще не обросла экспериментами, дискуссиями, диссертациями. Первые специально поставленные исследования только начаты. Главная их цель (так считал автор гипотезы): постараться опровергнуть идею. Это самый короткий и верный путь проверить ее истинность.
12.9. Биотика
Нет, это просто знамение времени! То, что именно сейчас электронщики начинают задумываться: а как же природа решает аналогичные проблемы? Ведь у нее нет ни ламп, ни полупроводников, ни интегральных схем, и все же она (вспомним про мозг) решает свои задачи и демонстрирует при этом настоящие чудеса.
Наука, в которой используются патенты природы, где изучаются полезные для микроэлектроники особенности живой материи, получила название «биотика».
Биотика еще только постигает природные азы. Тайны живого лишь начали приоткрываться, а уже есть и первые успехи. В 1974 году было установлено, что многие органические материалы (трансполиацетилен с примесными добавками, фталоцианин) способны возбуждать и проводить электрический ток. Так появилась надежда создать «провода» толщиной в одну молекулу. Более того, когда проходит электрический сигнал определенной полярности (плюс или минус), органическое вещество может переходить в другое состояние. Возможно, этим путем удастся создать и молекулярные переключатели.
Обнаружены и молекулы, которые выпрямляют электрический ток. Это молекулы, способные ориентироваться определенным образом, изменяя при этом свои физико-химические и оптические свойства. Они могли бы стать ячейками памяти.
Исследователи, занимающиеся молекулярной электроникой, полны оптимизма. Одну за другой они отбирают у писателей-фантастов темы, которые еще вчера годились лишь для научно-фантастического романа или повести.
Вот примеры. Возможно, в будущем (прежде ориентировались на круглую дату – 2000 год) производство биочипов – в виде очень больших молекул, на которых разместятся и блоки памяти, и логические, и управляющие элементы – будут вестись методами генной инженерии. Бактерии начнут в особых реакторах «штамповать» почти готовые биоЭВМ.
Ученые еще полагают (это было записано и в Комплексной программе научно-технического прогресса стран – членов СЭВ, с ориентиром на 2000 год), что биологические ультрамикросхемы позволят разместить в кубическом сантиметре объема память нынешних больших ЭВМ. Вот называвшиеся тогда точные цифры: емкость запоминающих устройств у биоЭВМ будет в миллиард раз больше, а их быстродействие – в 100 миллионов раз выше, чем у моделей на обычных интегральных схемах.
Такой белковый «кубик» можно будет вживить прямо в мозг, обогатив человека всем океаном современного знания. Или добавив к человеческим еще и искусственные органы зрения, слуха, голоса. Еще можно микробиокомпьютер ввести в кровеносную систему, чтобы он управлял химическими процессами в организме.
ЭВМ, череда поколений… Какими они будут – поколения № 6, № 7?.. Какие еще нас ждут сюрпризы?..
Пока же ученые предлагают взять за образец молекулу ДНК. Вот как они рассуждают: «Если рассмотреть все имеющиеся виды хранения и передачи информации, нетрудно увидеть, что один из наиболее удачных способов осуществляется в природе при помощи молекул этого типа. Мы еще не вполне готовы подключить телефонные провода к молекулам ДНК. Пока мы просто хотим посмотреть, чему у этих молекул можно научиться».