Гёдель, Эшер, Бах. Эта бесконечная гирлянда — страница 111 из 188

Ахилл: И правда! Это предложение о фразе «это не название книги» — и предложение преглупое.

Черепаха: Почему преглупое?

Ахилл: Потому, что оно совершенно бессмысленно. Вот вам еще одно в том же духе:

«ЗАВИСИТ ОТ ТОГО, СКОЛЬКО ДЕНЕГ У КОГО»

ЗАВИСИТ ОТ ТОГО, СКОЛЬКО ДЕНЕГ У КОГО.

Ну, и что это означает? Право слово, что за глупая игра.

Черепаха: Ну что вы — напротив, это очень серьезно. В действительности, эта операция предварения некоей фразы ее собственной цитатой настолько важна, что я дам ей специальное имя.

Ахилл: Да? Какого же названия удостоится эта глупая операция?

Черепаха: Думаю, что я назову это «квайнированием» фразы.

Ахилл: «Квайнирование»? Что это еще за слово?

Черепаха: Если не ошибаюсь, это слово из тринадцати букв.

Ахилл: Я имел в виду, почему вы выбрали именно эти тринадцать букв и именно в таком порядке.

Черепаха: Ага, теперь я понимаю, что вы хотели сказать, спросив меня: «Что это еще за слово?» Видите ли, эту операцию изобрел философ по имени «Виллард Ван Орман Квайн», так что я назвал ее в его честь. К сожалению, подробнее объяснить не могу. Почему его имя состоит именно из этих букв, и именно в таком порядке — на этот вопрос у меня пока нет ответа. Но я готова попытаться —

Ахилл: Прошу вас, не утруждайтесь! Меня совсем не интересуют эти детали. Так или иначе, теперь я умею квайнировать фразы. Это довольно занимательно… Вот еще одна квайнированная фраза:

«ЭТО ФРАГМЕНТ ПРЕДЛОЖЕНИЯ» ЭТО ФРАГМЕНТ ПРЕДЛОЖЕНИЯ.

Разумеется, это глупо, зато интересно. Вы берете кусочек предложения, квайнируете его, и оп-ля! перед вами что-то новое! В данном случае, это настоящее предложение.

Черепаха: Попробуйте квайнировать фразу «это фуга без темы».

Ахилл: Фуга без темы была бы —

Черепаха: — аномалией, разумеется. Но не отвлекайтесь. Сначала квайны, а потом пьесы. Как говорится, сделал дело — играй смело!

Ахилл: Квайны, говорите? Хорошо:

«ЭТО ФУГА БЕЗ ТЕМЫ» ЭТО ФУГА БЕЗ ТЕМЫ

Мне кажется, что больше смысла было бы говорить о «предложении» вместо «фуги». Ну да ладно… Дайте мне еще пример!

Черепаха: Хорошо, вот вам напоследок такая фраза:

«ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ».

Ахилл: Это совсем нетрудно:

«ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ».

ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ.

Гмм… Что-то здесь не то. О, понятно — это предложение говорит о себе самом! Видите?

Черепаха: Что вы хотите сказать? Предложения не умеют говорить.

Ахилл: Да, но они упоминают о каких-то вещах, и это предложение упоминает прямо, недвусмысленно и безошибочно о самом себе! Чтобы это увидеть, вы должны вспомнить, что такое квайнирование.

Черепаха: Мне совсем не кажется, что это предложение говорит о себе самом. Покажите мне хотя бы одно «Я», или «это предложение», или что-нибудь в этом роде.

Ахилл: Вы нарочно придуряетесь. Его красота как раз и заключается в том, что оно относится к себе самому, не называя себя при этом прямо.

Черепаха: Придется вам разложить это для меня по полочкам — я женщина простая и таких сложностей не понимаю.

Ахилл: Вы ведете себя как Фома Неверующий. Ну ладно, постараюсь… Представьте себе, что я придумываю предложение — назовем его «предложением П» — и оставляю в нем прочерк.

Черепаха: Например?

Ахилл: Вот так:

« ___ ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ».

Теперь тема предложения П зависит от того, как вы заполните прочерк. Как только вы сделали выбор, тема определена: Это будет фраза, которую вы получите, кзайнировав то, что оказалось на месте прочерка. Назовем это «предложением К», поскольку оно получается в результате квайнирования.

Черепаха: Что ж, это имеет смысл. Если бы на месте прочерка мы поставили бы «написано на старых банках горчицы, чтобы сохранять ее свежей», тогда предложением К было бы:

«НАПИСАНО НА СТАРЫХ БАНКАХ ГОРЧИЦЫ, ЧТОБЫ СОХРАНЯТЬ ЕЕ СВЕЖЕЙ»

НАПИСАНО НА СТАРЫХ БАНКАХ ГОРЧИЦЫ, ЧТОБЫ СОХРАНЯТЬ ЕЕ СВЕЖЕЙ.

Ахилл: Значит, Предложение П утверждает (не знаю, правда, насколько это верно), что Предложение К —- Любовная Песнь Черепахи. Так или иначе, Предложение П здесь говорит не о себе самом, но о Предложении К. Согласны ли вы с этим?

Черепаха: Безусловно — и что за прелестная Песнь!

Ахилл: Но теперь я хочу заполнить прочерк чем-то другим, а именно:

«ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ».

Черепаха: Ах, боже мой! Вы слишком все усложняете. Боюсь, этот орешек окажется мне не по зубам…

Ахилл: О, не волнуйтесь — я уверен, что скоро вы все поймете. Теперь Предложением К становится:

«ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ»

ПОСЛЕ КВАЙНИРОВАНИЯ ДАЕТ ЛЮБОВНУЮ ПЕСНЬ ЧЕРЕПАХИ.

Черепаха: Постойте-ка, я, кажется, поняла! Предложение К теперь стало совершенно таким же, как и предложение П.

Ахилл: И, поскольку Предложение К — всегда тема предложения П, у нас получается петля: Предложение П теперь указывает на самого себя. Как видите, автореферентность здесь получилась вполне случайно. Обычно Предложения П и К совершенно не похожи — но при правильном выборе темы в предложении П, квайнирование покажет вам этот магический трюк.

Черепаха: Ловко, ничего не скажешь! Странно, почему я сама до этого не додумалась. Скажите, а следующее предложение тоже автореферентно?

«СОСТОИТ ИЗ ЧЕТЫРЕХ СЛОВ»

СОСТОИТ ИЗ ЧЕТЫРЕХ СЛОВ.

Ахилл: Гм-м… Трудно сказать. Это предложение относится не себе самому, но скорее ко фразе «состоит из четырех слов». Хотя, разумеется, эта фраза — ЧАСТЬ предложения.

Черепаха: Так что предложение говорит о своей части — и что же?

Ахилл: Это можно тоже рассматривать как автореференцию, не так ли?

Черепаха: По моему мнению, отсюда еще далеко до настоящей автореферентности. Но не забивайте себе сейчас голову этими сложностями — у вас еще будет время о них поразмыслить.

Ахилл: Правда?

Черепаха: Безусловно, будет. А пока, почему бы вам не попробовать квайнировать фразу «Предваряемый цитатой себя самого, производит ложь»?

Ахилл: А, вы имеете в виду тот хулиганский звонок. Квайнирование этой фразы дает:

«ПРЕДВАРЯЕМЫЙ ЦИТАТОЙ СЕБЯ САМОГО, ПРОИЗВОДИТ ЛОЖЬ»

ПРЕДВАРЯЕМЫЙ ЦИТАТОЙ СЕБЯ САМОГО, ПРОИЗВОДИТ ЛОЖЬ.

Так вот что говорил тот негодяй! Я тогда его не понял. И правда, какое неприличное замечание! Да за такое надо в тюрьму сажать!

Черепаха: Это почему же?

Ахилл: Я от него просто заболеваю, в отличие от предыдущих высказываний, я не могу сказать, истинно ли оно или ложно. И чем больше я о нем думаю, тем больше запутываюсь. У меня от этой путаницы голова идет кругом. Интересно, что за лунатик изобрел подобный кошмар и мучает им по ночам честных людей?

Черепаха: Кто знает… Ну что, пора спускаться?

Ахилл: В этом нет нужды — мы уже на первом этаже. Зайдите обратно, и вы в этом убедитесь (Они заходят в башню и видят небольшую деревянную дверь) Вот и выход — следуйте за мной.

Черепаха: Вы уверены? Я вовсе не хочу свалиться с третьего этажа и сломать себе панцирь.

Ахилл: Разве я вас когда-нибудь обманывал?

(И он открывает дверь. Прямо перед ними сидит, по всей видимости, тот же самый мальчуган, болтающий с той же самой девушкой. Ахилл и г-жа Ч поднимаются по тем же ступенькам, по которым, как кажется, они раньше спускались, чтобы зайти в башню, и выходят во двор, кажущийся тем же самым двориком, в котором они уже побывали раньше.)

Благодарю вас, г-жа Ч, за ваше объяснение по поводу того хулиганского звонка.

Черепаха: А я вас — за прелестную прогулку. Надеюсь, мы скоро увидимся опять.

ГЛАВА XIV: О формально неразрешимых суждениях ТТЧ и родственных систем[41]

Две идеи «устрицы»

НАЗВАНИЕ ЭТОЙ ГЛАВЫ — адаптация заглавия знаменитой статьи Гёделя, опубликованной в 1931 году; я заменил «Principia mathematica» на ТТЧ. Гёдель написал эту статью строго техническим языком, стараясь дать безупречное доказательство своей теоремы; в этой главе я постараюсь изложить его идеи более интуитивно. Сосредоточусь на двух идеях, лежащих в основе Гёделева доказательства. Первая идея — это открытие того факта, что некоторые строчки ТТЧ могут быть интерпретированы как суждения о других строчках ТТЧ; иными словами, ТТЧ оказалась языком, способным к самоанализу. Этот факт вытекает из Гёделевой нумерации. Вторая идея — это то, что данное свойство может быть сконцентрировано полностью в одной строке: в фокусе такой строки — она сама. Этот прием восходит, в принципе, к диагональному методу Кантора.

По моему мнению, всякий, кто желает достичь глубокого понимания Гёделева доказательства, должен признать, что в его основе лежит слияние этих двух идей. Каждая из них по отдельности уже является шедевром, но чтобы соединить их, потребовался гений. Однако если бы мне предложили выбрать, какая из двух идей важнее, я, безусловно, указал бы на первую — Гёделеву нумерацию, поскольку эта идея приложима к понятию значения и упоминания во всех системах, имеющих дело с символами. Эта идея выходит далеко за пределы математической логики, в то время как Канторов прием, как бы значим он ни был для математиков, почти не связан с реальной жизнью.

Первая идея: пары доказательства

Не откладывая дела в долгий ящик, приступим к рассмотрению самого доказательства. В IX главе мы уже объяснили довольно подробно идею Гёделева изоморфизма. Здесь мы постараемся описать математическое понятие, позволяющее нам перевести предложение типа «Строчка 0=0 — теорема ТТЧ» в высказывание теории чисел. Для этого мы воспользуемся