Гёдель, Эшер, Бах. Эта бесконечная гирлянда — страница 119 из 188

добавить к ТТЧ схему аксиом. Эта схема аксиом будет тем эталоном, по которому будут изготовляться G, G', G'', G''' и так далее. Может быть, что путем добавления этой схемы аксиом (назовем ее «Gω.») нам удастся перехитрить метод «Гёделизации». Действительно, кажется совершенно ясным, что добавление Gω, к ТТЧ будет последним шагом, необходимым для полной аксиоматизации всех истин теории чисел.

Этот момент соответствует тому месту «Акростиконтрапунктуса», где Черепаха рассказывает о создании Крабом патефона «Омега». Однако читатели были оставлены в неизвестности по поводу судьбы этого аппарата, поскольку усталая Черепаха решила поползти домой спать (но прежде, чем уйти, хитрое животное сделало тонкий намек на Теорему Гёделя о неполноте). Теперь, наконец, у нас дошли руки до того, чтобы прояснить ту ситуацию… Возможно, что, прочтя Диалог «Праздничная Кантататата», вы уже подозреваете, каков будет ответ.

Непополнимость

Как вы, наверное, и подозревали, даже это фантастическое улучшение ТТЧ не может избежать той же судьбы. Странно, что происходит это по той же причине, что и раньше. Схема аксиом недостаточно мощна, и к ней снова приложимо Гёделево построение. Постараюсь это объяснить. (Существует более строгое объяснение, чем то, которое я приведу здесь.) Если бы удалось описать все строчки G, G', G'', G''', … при помощи одной-единственной типографской схемы, это означало бы, что существует способ описать Гёделевы номера этих строчек при помощи одной-единственной арифметической схемы. И этот арифметический портрет бесконечного класса чисел может быть представлен в ТТЧ + G' при помощи некоей формулы АКСИОМА-ОМЕГА{а}, которая интерпретируется следующим образом: «а — это Гёделев номер одной из аксиом, получающихся из Gω». Когда a заменяется на какой-либо определенный символ числа, получившаяся формула будет теоремой ТТЧ + Gω тогда и только тогда, когда этот символ представляет собой Гёделев номер аксиомы, принадлежащей этой схеме.

С помощью этой новой формулы становится возможным представить даже такое сложное понятие как пара-доказательства-ТТЧ + Gω внутри ТТЧ + Gω:

ПАРА-ДОКАЗАТЕЛЬСТВА-(ТТЧ + Gω){a,a'}

Используя эту формулу, мы можем построить нового «дядю» и затем приступить к его арифмоквайнированию уже знакомым нам способом, производя таким образом еще одну неразрешимую строчку, которую мы назовем «ТТЧ + Gω+1». Вы, наверное, спросите, почему ТТЧ + Gω+1 не находится среди аксиом, порожденных нашей схемой аксиом ТТЧ + Gω? Ответом является то, что ТТЧ + Gω оказалась недостаточно хитра, чтобы предусмотреть возможность своего собственного включения в теорию чисел.

В «Акростиконтрапунктусе» Черепаха, чтобы создать «непроигрываемую запись», должна была достать чертежи того патефона, который она собиралась разрушить. Это было необходимо для того, чтобы вычислить, какой тип вибраций обладает разрушительной силой для данного патефона, и затем создать запись, в звуковых дорожках которой были бы закодированы именно такие звуки. Это довольно близкая аналогия с методом Гёделя, где собственные свойства системы отражаются в понятии пар доказательства и затем используются против нее самой. Любая система, как бы сложна она ни была, может быть подвергнута Гёделевой нумерации, после чего в ней может быть определено понятие пар доказательства — и это будет ружьем, которое выстрелит в самого охотника. Как только система определена, упакована в «коробку», она становится уязвимой.

Этот принцип прекрасно иллюстрирован в диагональном методе Кантора, который позволяет найти недостающее действительное число для каждого хорошо определенного списка действительных чисел между 0 и 1. Именно создание хорошо определенного списка действительных чисел является причиной неудачи. Давайте посмотрим, как Канторов метод может быть повторен снова и снова. Подумайте, что произойдет, если, начиная с некоего списка L, вы проделаете следующее:

(1а) Возьмете список L и построите его диагональное число d.

(1b) Добавите d к списку L, получая таким образом новый список L + d.

(2а) Возьмете список L + d и построите его диагональное число d'.

(2b) Добавите d' к списку L + d, получая таким образом новый список L + d'.

.

.

Этот процесс постепенного «залатывания дырок» в L кажется слишком медленным, поскольку, имея в распоряжении L, мы могли бы получить d, d', d'', d''' сразу. Но если вы думаете, что создавав такой список, получите полное описание всех действительных чисел, то вы ошибаетесь. Проблема возникает в тот момент, когда вы спрашиваете себя, в каком месте L нужно вставить список диагональных чисел. Какой бы хитроумной схемой вы при этом не пользовались, как только ваш новый список L будет закончен, он тут же окажется уязвимым. Как я уже сказал, именно создание хорошо определенного списка действительных чисел оказывается причиной неудачи.

В случае с формальными системами, неполнота возникает, когда мы определяем предполагаемый рецепт выражения теоретико-численной истины. Именно в этом заключалась проблема ТТЧ + Gω. Как только вы вводите все хорошо определенные G в ТТЧ, там тут же появляется некое новое G, непредусмотренное вашей схемой аксиом. В случае сражения Черепахи с Крабом в «Акростиконтрапунктусе», как только «архитектура» патефона была определена, он становился уязвимым для разбивальной музыки.

 Так что же делать? Конца этому не предвидится. Кажется, что ТТЧ, даже если расширять ее до бесконечности, всегда будет оставаться неполной. Поэтому говорят, что ТТЧ непополнима, поскольку неполнота является неотъемлемой характеристикой ТТЧ: это одно из ее основных свойств и избавиться от него невозможно. Более того, эта проблема будет преследовать любой вариант теории чисел, будь это расширенная версия ТТЧ, измененная версия ТТЧ, или альтернативная версия ТТЧ. Дело в том, что в любой данной системе возможность построить неразрешимую строчку путем Гёделева метода автореференции зависит от трех основных условий:

1) Чтобы система была достаточно мощной, так что все желаемые высказывания о числах, как истинные, так и ложные, могли бы быть в ней выражены. (Если это условие не выполняется, значит, система с самого начала слишком слаба, чтобы соперничать с ТТЧ, поскольку она даже не способна выразить теоретико-численные понятия, выразимые в ТТЧ. На метафорическом языке «Акростиконтрапунктуса» это было бы равносильно использованию вместо патефона, скажем, холодильника.

2) Чтобы все общерекурсивные отношения были выражены формулами системы. (Если это условие не выполняется, значит, система не выражает в своих теоремах некоторых общерекурсивных истин — жалкая неудача в попытке выразить все истины теории чисел! На метафорическом языке «Акростиконтрапунктуса» это было бы равносильно использованию патефона низкого качества.)

3) Чтобы аксиомы и типографские схемы, выводимые по правилам данной системы, можно было распознать при помощи конечной процедуры решения. (Если это условие не выполняется, значит, не существует метода, чтобы отличить правильные деривации от «незаконных» — таким образом выходит, что «формальная система» вовсе не формальна и даже не определена как следует. На метафорическом языке «Акростиконтрапунктуса» это было бы равносильно частично собранному патефону.

Если эти три условия удовлетворены, значит, любая непротиворечивая система будет неполной, поскольку в ней возможна Геделева конструкция.

Интересно то, что любая подобная система роет сама себе яму, мощность системы является причиной ее «падения» Падение происходит потому, что система достаточно мощна, чтобы выразить автореферентные суждения. В физике существует понятие «критической массы» радиоактивного вещества, такого, например, как уран. Если масса ниже критической, с ураном ничего не происходит. Если же критическая масса достигнута, то в уране начинается цепная реакция и он взрывается. Кажется, что у формальных систем есть аналогичный критический «порог». Ниже этого порога система «безвредна» и даже не пытается формально выразить арифметические истины, но, как только порог достигнут, система внезапно приобретает возможность выражать автореферентные суждения и, следовательно, обрекает себя на неполноту. Этот критический порог по-видимому достигается примерно тогда, когда в системе выполняются все три данных выше условия. Как только система становится способной к автореферентности, в ней появляется «дыра», словно вырезанная по заказу она учитывает особенности системы и использует их против самой этой системы.

Страсти по Лукасу

Удивительная повторяемость Геделева аргумента использовалась многими — в частности Дж. Р. Лукасом — как оружие для защиты идеи, что человеческий разум отличается неким специфическим качеством, которое невозможно имитировать при помощи «механических автоматов» — то бишь, компьютеров. Лукас начинает свою статью «Разум, машины и Гедель» (J. R. Lucas, «Minds, Machines, and Godel») следующими словами:

Мне кажется что теорема Геделя доказывает, что Механизм не может выражать истину, что означает что разум не может быть объяснен как механизм.[42]

Затем он приступает к изложению своих аргументов, которые я здесь кратко перескажу. Он утверждает, что для того, чтобы мы могли считать интеллект компьютера равным интеллекту человека, компьютер должен быть способен проделать любое интеллектуальное задание, на которое способен человек. Однако, говорит Лукас, компьютер не способен проделать «Геделизацию» (один из его забавно фамильярных терминов) так, как на это способны люди. Почему? Подумайте о любой формальной системе, такой как ТТЧ, или ТТЧ + G, или даже ТТЧ + Gω. Легко составить компьютерную программу, выводящую теоремы этой системы таким образом, что рано или поздно любая заранее выбранная теорема оказывалась бы выведенной. Это значит, что компьютер не пропускал бы не одной области в «пространстве» всех теорем Подобная программа состояла бы из двух основных частей (1) подпрограмма, «штампующая» аксиомы на основе «схемы аксиом», если таковая имеется и (2) подпрограмма, использующая правила вывода для получения новых теорем на основании имеющихся теорем (и, разумеется, аксиом). Эти две подпрограммы использовали