30 — число MIU.
Во-вторых, мы знаем, что это высказывание изоморфно следующему:
MU — теорема системы MIU.
Следовательно, мы имеем право утверждать, что последнее высказывание — второе пассивное значение МУМОНа. Это может показаться странным, поскольку МУМОН состоит всего лишь из плюсов, скобок и тому подобных символов ТТЧ. Как же он может выражать что-либо, кроме арифметических высказываний?
На самом деле, это возможно. Так же, как одна единственная музыкальная строчка может заключать в себе гармонию и мелодию, как слово BACH может быть прочитано как имя и как мелодия, как одно и то же словосочетание может быть аккуратным описанием картины Эшера, структуры ДНК, произведения Баха или Диалога под тем же названием, МУМОН может быть понят, по крайней мере, двояко. Это происходит благодаря следующим фактам:
Факт 1. Высказывания типа «MU — теорема» могут быть закодированы в теории чисел при помощи Гёделевой нумерации.
Факт 2. Высказывания теории чисел могут быть переведены в ТТЧ.
Можно сказать, что (согласно Факту 1) МУМОН — это закодированное сообщение, в котором (согласно Факту 2) символы кода — не более, чем символы ТТЧ.
Вы можете возразить, что закодированное сообщение, в отличие от незакодированного, само по себе ничего не выражает — чтобы его понять, необходимо знать код. Однако на самом деле незакодированных сообщений не существует Просто одни сообщения написаны на более знакомых кодах, а другие — на менее знакомых. Чтобы раскрыть значение сообщения, его необходимо «извлечь» из кода при помощи некоего механизма, или изоморфизма Иногда открыть метод дешифровки бывает трудно, но, как только этот метод раскрыт, сообщение становится прозрачным, как стекло. Когда код становится достаточно знакомым, он перестает выглядеть как таковой, и мы забываем о существовании декодирующего .механизма. Сообщение сливается со значением.
Здесь мы сталкиваемся со случаем такого полного отождествления сообщения со значением, что мы с трудом можем вообразить, что данные символы могут иметь какое-то иное значение. Мы настолько привыкли считать, что символы ТТЧ придают строчкам этой системы теоретико-числовое значение (и только теоретико-числовое), что нам бывает трудно представить, что некоторые строчки ТТЧ могут быть интерпретированы, как высказывания о системе MIU. Однако Гёделев изоморфизм заставляет нас признать этот второй уровень значения у некоторых строчек ТТЧ.
МУМОН, декодированный в более знакомом нам виде, сообщает, что
30 — число МIU.
Это высказывание теории чисел, полученное при интерпретации каждого знака обычным путем.
Открыв Гёделеву нумерацию и построенный на ее основе изоморфизм, мы в каком-то смысле расшифровали код, на котором высказывания о системе MIU записаны при помощи строчек ТТЧ. Гёделев изоморфизм — это новый обнаружитель информации, в том же смысле, как дешифровки старинных текстов были обнаружителями заложенной в этих текстах информации.
Декодированное этим новым и менее знакомым нам способом, МУМОН сообщает, что
MU — теорема системы MIU.
Мораль этой истории мы уже слышали: любой узнанный нами изоморфизм автоматически порождает значение; следовательно, у МУМОНа есть по крайней мере два пассивных значения, а может быть, и больше!
Разумеется, это еще не конец; мы только начали открывать возможности Гёделева изоморфизма. Естественным трюком было бы использовать возможность ТТЧ отображать другие формальные системы на себя саму, на манер того, как Черепаха повернула патефоны Краба против их самих, или как Бокал Г атаковал сам себя, разбившись. Чтобы это сделать, мы должны приложить Гёделеву нумерацию к самой ТТЧ, так же, как мы это сделали с системой MIU, и затем «арифметизировать» правила вывода. Это совсем нетрудно. Например, мы можем установить следующее соответствие:
Символ Кодон Мнемоническое обоснование
0 ....... 666 Число Зверя для Таинственного Нуля
S ....... 123 последовательность: 1, 2, З…
= ....... 111 зрительное сходство, в повернутом виде + ....... 112 1+1=2
* ....... 236 2*3=6
( ....... 362 кончается на 2 \
) ....... 323 кончается на 3 | эти
< ....... 212 кончается на 2 | три пары
> ....... 213 кончается на 3 | формируют
[ ....... 312 кончается на 2 | схему
] ....... 313 кончается на 3 /
а ....... 262 противоположно A (626)
' ....... 163 163-простое число
Λ ...... 161 «Λ»-«график» последовательности 1-6-1"
V ...... 616 «V»-«график» последовательности 6-1-6
э ...... 633 в некотором роде, из 6 следуют 3 и 3
~ ....... 223 2+2 не 3
E ....... 333 «E» выглядит как «3»
A ....... 626 противоположно «A»- также «график» 6-2-6
: ....... 636 две точки, две шестерки
пунк .... 611 особенное число (именно потому, что в нем нет ничего особенного)
Каждый символ ТТЧ соотнесен с трехзначным числом, составленным из цифр 1, 2, 3 и 6 таким образом, чтобы его было легче запомнить. Каждое такое трехзначное число я буду называть Геделев кодоном, или, для краткости, кодоном. Заметьте, что для b. с, d или е кодонов не дано, поскольку мы используем здесь строгую версию ТТЧ. Для этого есть причина, которую вы узнаете в главе XVI. Последняя строчка, «пунктуация», будет объяснена в главе XIV.
Теперь мы можем представить любую строчку или правило ТТЧ в новом наряде. Вот, например, Аксиома 1 в двух нотациях, новая над старой:
626, 262, 636, 223, 123, 262, 111, 666
. A a : ~ S a = 0
Обычная условность — использование пунктуации после каждых трех цифр — очень кстати совпала с нашими кодонами, облегчая их чтение.
Вот Правило Отделения в новой записи:
ПРАВИЛО: Если x и 212x633y213 являются теоремами, то у - также теорема.
Наконец, вот целая деривация, взятая из предыдущей главы; она дана в строгой версии ТТЧ и записана в новой нотации:
626,262,636,626.262,163,636,362,262,112,123,262,163,323,111,123,362,262,112,262,163,323 аксиома 3
. A a : A a ' : ( a + S a ' ) = S ( a + a ' )
626,262,163,636,362,123,666,112,123,262,163,323,111,123,362,123,666,112,262,163,323 спецификация
. A a ' : ( S 0 + S a ' ) = S ( S 0 + a ' )
362,123,666,112,123,666,323,111,123,362,123,666,112,666,323 спецификация
. ( S 0 + S 0 ) = S ( S 0 + 0 )
626,262,636,362,262,112,666,323.111.262 аксиома 2
. A а : ( а + 0 ) = а
362,123,666,112,666,323,111,123,666 спецификация
. ( S 0 + 0 ) = S 0
123,362,123,666.112,666,323,111,123,123,666 добавить «123»
. S ( S 0 + 0 ) = S S 0
362,123,666,112,123,666,323,111,123,123,666 транзитивность
. ( S 0 + S 0 ) = S S 0
Обратите внимание, что я изменил название правила «добавить S» на «добавить 123», поскольку данное правило узаконивает именно эту типографскую операцию.
Новая нотация кажется весьма странной. Вы теряете всякое ощущение значения; однако, если потренироваться, вы сможете читать строчки в этой нотации так же легко, как вы читали строчки ТТЧ. Вы сможете отличать правильно сформированные формулы от неправильных с первого взгляда. Естественно, поскольку это настолько наглядно, вы будете думать об этом, как о типографской операции — но в то же время выбор правильно сформированных формул в этой нотации эквивалентен выбору определенного класса чисел, у которых есть также арифметическое определение.
А как же насчет «арифметизации» всех правил вывода? Они все еще остаются типографскими. Но погодите минутку! Согласно Центральному Предложению, типографское правило — все равно, что арифметическое правило. Ввод и перестановка цифр в числах десятичной записи — это арифметическая операция, которая может быть осуществлена типографским путем. Подобно тому, как добавление «О» справа от числа эквивалентно умножению этого числа на 10, каждое правило представляет собой компактное описание длинного и сложного арифметического действия. Таким образом, нам не придется искать эквивалентных арифметических правил, поскольку все правила уже арифметические!
С такой точки зрения, приведенная выше деривация теоремы «362,123,666,112,123,666,323,111,123,123,666» представляет собой последовательность весьма сложных теоретико-численных трансформаций, каждая из которых действует на одно или более данных чисел. Результатом этих трансформаций является, как и ранее, выводимое число, или, более точно, число ТТЧ. Некоторые арифметические правила берут старое число ТТЧ и увеличивают его определенным образом, чтобы получить новое число ТТЧ, некоторые уменьшают старое число ТТЧ; другие правила берут два числа ТТЧ, воздействуют на них определенным образом и комбинируют результаты, получая новое число ТТЧ — и так далее, и тому подобное. Вместо того, чтобы начинать с одного известного числа ТТЧ, мы начинаем с пяти — одно для каждой аксиомы (в строгой нотации). На самом деле, арифметизированная ТТЧ очень похожа на арифметизированную систему MIU — только в ней больше аксиом и правил, и запись точных арифметических эквивалентов была бы титаническим и совершенно «непросветляющим» трудом. Если вы внимательно следили за тем, как это было сделано для системы