Гёдель, Эшер, Бах. Эта бесконечная гирлянда — страница 86 из 188

ГЛАВА XI: Мозг и мысль

Новый взгляд на мысль

С ПОЯВЛЕНИЕМ компьютеров люди начали работать над созданием «думающих машин», при этом они стали свидетелями престранных вариаций на тему мысли. Были созданы программы, чье мышление так же походило на человеческое, как движение заводной куклы — на движение человека. Все странности нашего мышления, его слабые и сильные стороны, причуды и изменчивость вышли на поверхность, когда мы получили возможность экспериментировать с самодельными формами мышления — или приближений к мышлению. В результате в течение последних двадцати лет мы развили новый взгляд на то, чем является и чем не является мысль. За это время выяснилось много нового о малом и о большом масштабах «аппаратуры» нашего мозга. Эти исследования пока не смогли ответить на вопрос о том, как мозг работает с идеями, но они, тем не менее, дают нам некоторое представление о биологических механизмах, управляющих нашим мышлением.

В следующих двух главах мы попытаемся соединить наши знания об искусственном интеллекте с некоторыми фактами, которые нам удалось узнать благодаря хитроумным экспериментам с мозгом животных и исследованиям процессов мышления, проведенных специалистами в области психологии. Мы начали разговор об этом в «Прелюдии» и в «Муравьиной фуге»; теперь поговорим о том же на более глубоком уровне.

Интенсиональность и экстенсиональность

Мысль должна зависеть от отражения действительности аппаратурой мозга. В предыдущих главах мы разработали формальные системы, отражающие области математической действительности с помощью символов. До какой степени подобные формальные системы могут служить моделями обращения мозга с идеями?

В системе pr и затем в других, более сложных системах мы видели, как значение, в ограниченном смысле этого слова, возникает из изоморфизма, соотносящего типографские символы с числами, арифметическими действиями и отношениями, а строчки типографских символов — с высказываниями. В мозгу нет никаких типографских символов, но есть кое-что получше: активные элементы, которые могут хранить информацию, а также передавать ее и получать новую информацию от других активных элементов. Таким образом, у нас есть активные символы вместо пассивных типографских символов. В мозгу правила смешаны с самими символами, в то время как на бумаге символы — это статичные единицы, а правила находятся у нас в голове. Благодаря строгости формальных систем, которые мы до сих пор рассматривали, читатель может заключить, что изоморфизм между символами и реальными вещами — это жесткое взаимно однозначное соответствие, что-то вроде ниток, соединяющих марионетку с ведущей ее рукой. Однако важно понимать, что это вовсе не так. В той же ТТЧ понятие «пятьдесят» может быть выражено различными символами, скажем:

((SSSSSSSO*SSSSSSSO)+(SO*SO))

и

((SSSSSO*SSSSSO)+(SSSSSO*SSSSSO))

То, что обе эти записи обозначают один и тот же номер, вовсе не ясно априори. Вы можете работать с каждым из этих выражений независимо, пока не наткнетесь на какую-нибудь теорему, которая заставит вас воскликнуть: «Да это же то самое число!»

В вашей голове могут соседствовать различные мысленные образы одного и того же человека, например:

Человек, чью книгу я послал несколько дней тому назад другу в Польшу.

Незнакомец, заговоривший со мной и моими приятелями в кафе сегодня вечером.

То что оба эти образа обозначают одного и того же человека, вовсе не ясно априори. Они могут находиться в вашей голове раздельно, пока, разговаривая с незнакомцем, вы не наткнетесь на тему, которая поможет вам понять, что эти образы относятся к одному и тому же человеку: «Да, вы же тот самый человек!»

Не все мысленные описания человека обязательно соединяются с неким центральным символом, хранящим его имя. Описания могут рождаться и использоваться независимо. Мы можем изобретать несуществующих людей, придумывая их описания, совместить два описания, обнаружив, что они относятся к одному и тому же человеку, разделить одно описание на два, если обнаружим, что оно относится не к одному, а к двум предметам, и так далее. Это «исчисление описаний» находится в самом сердце мышления. Считается, что оно интенсионально, а не экстенсионально: это означает, что описания могут свободно «плавать на поверхности», а не стоять на якоре, привязанные к определенным, известным предметам. Интенсиональность мышления связана с его гибкостью, она дает нам возможность изобретать воображаемые миры, соединять разные описания в одно, разделять одно описание на два, и так далее.

Представьте себе, что подруга, взявшая у вас на время машину, звонит и говорит, что произошла авария машину занесло на мокрой дороге и она перевернулась, упав в кювет «Я чудом избежала смерти,» — говорит она. В голове у вас появляются, одна за другой, соответствующие образы, которые становятся все реальнее по мере того как собеседница добавляет все новые детали; в конце рассказа вся картина стоит у вас перед глазами. Вдруг она, смеясь, сообщает вам что все это — первоапрельская шутка, и что ни с ней, ни с машиной ничего не случилось! В некотором смысле, это ничего не меняет. История и образы вызванные ею не теряют своей жизненности и надолго остаются у вас в памяти. В дальнейшей вы можете считать вашу подругу плохим водителем, поскольку впечатление оставленное ее рассказом, не пропало, когда вы узнали, что это — неправда. Выдумка и факт тесно переплетаются в нашем сознании, и это происходит потому, что мышление предполагает способность к изобретению сложных описаний и манипуляции ими, эти описания совсем не обязательно должны быть привязаны к реальным фактам или вещам.

В основе мышления — гибкое, интенсиональное представление о мире. Как же физиологическая система, такая как мозг, позволяет производить подобное представление?

«Муравьи» мозга

Самые важные клетки мозга — это нервные клетки или нейроны; их в мозгу около десяти миллиардов. (Интересно, что количество глиальных клеток, или глий, превосходит это число почти в десять раз. Считается, что глии играют второстепенную роль по сравнению с нейронами, поэтому мы не будем на них останавливаться.) У каждого нейрона есть несколько синапсов (на компьютерном жаргоне, «портов ввода»), расположенных на дендритах (и иногда — на теле клетки), и один аксон («канал вывода»). Ввод и вывод представляют собой электрохимические потоки, то есть движущиеся ионы. Между портом ввода и выводным каналом находится тело клетки, где принимаются «решения».

Эти решения, которые нейрону приходится принимать иногда до тысячи раз в секунду, следующего типа: нужно ли ему возбудиться — то есть, послать по аксону ионы. Эти ионы рано или поздно достигнут входных портов других нейронов, которым придется тогда принимать такое же решение. Решение принимается очень просто: если сумма всех входных импульсов превышает некий порог, то нейрон возбуждается; в противном случае этого не происходит.


Рис. 65. Схема нейрона. (Взято из книги Д. Вулдриджа «Механика мозга» (D.Woold-ridge, «The Machinery of the Brain», стр. 6).)

Некоторые входные импульсы могут быть негативными; они аннулируют позитивные импульсы, полученные из другого места. Так или иначе, на низшем уровне нашего разума царит простое сложение. Перефразируя знаменитое изречение Декарта, «я мыслю, значит я суммирую» (от латинского Cogito, ergo summo).

Хотя манера принятия решений кажется простой, ситуацию осложняет то, что у нейрона может быть до 200 000 отдельных входов; это означает, что для принятия решения нейрон должен манипулировать иногда 200 000 слагаемых. Как только решение принято, поток ионов устремляется по аксону к выходу. Однако они могут встретить на пути развилку или даже несколько. Тогда единый импульс разделяется и идет по нескольким ветвям аксона. Выхода достигают уже несколько импульсов, которые при этом могут прибыть к месту своего назначения в разное время, так как ветви аксона, по которым они двигаются, могут быть разной длины и иметь разное сопротивление. Важно, однако, то, что все они начались как единый импульс, испущенный телом клетки. После того, как нейрон возбудится, ему необходимо некоторое время, чтобы «восстановить силы»— обычно это время измеряется миллисекундами, так что нейрон может возбуждаться до тысячи раз в секунду.

Более крупные структуры мозга

Мы только что описали «муравьев» мозга. А как насчет «команд» или «сигналов»? А насчет «символов»' Мы заметили, что, несмотря на сложность входных импульсов, каждый нейрон может ответить одним из двух способов — либо возбуждаясь, либо нет. Это дает весьма небольшое количество информации. Безусловно, чтобы передавать и обрабатывать большой объем информации, необходимо участие множества нейронов. Можно предположить, что существуют более крупные структуры, состоящие из многих нейронов, которые работают с понятиями высшего уровня. Это, несомненно, верно; однако наивное предположение о том, что каждой идее соответствует определенная группа нейронов, скорее всего, неправильно.

Мозг состоит из различных анатомических частей, таких как головной мозг, мозжечок и гипоталамус (см. рис. 66). Головной мозг — это самая большая часть человеческого мозга; он разделен на правое и левое полушария. Снаружи каждое из них покрыто слоями «коры», достигающей толщины в несколько миллиметров; эта оболочка так и называется корой головного мозга. С анатомической точки зрения, именно размеры коры головного мозга — наиболее бросающееся в глаза отличие между мозгом человека и мозгом менее разумных биологических видов. Мы не будем здесь подробно описывать различные части мозга, поскольку оказывается, что соотношение, которое можно установить между этими крупномасштабными органами и деятельностью, за которую они отвечают, весьма приблизительно.