Гёдель. Теоремы о неполноте — страница 9 из 24

а · (b - а) = (b + а) · (b - а)

мы сокращаем скобки (b - а) и делаем вывод, что а = b + а. Это ошибочно, потому что (b - а) равно 0 (поскольку а = b), а 0 нельзя делить. Если представить это в виде чисел и предположить, например, что а и b равны 2, переход от 5 к 6 соответствует тому, чтобы сказать, что из 2 · 0 = 4 · 0 (что истинно) следует 2 = 4.

Но как мы можем научить компьютер обнаруживать ошибки такого типа? Компьютер — это только машина; он не рассуждает, а слепо следует программе, записанной в его памяти. Для того чтобы компьютер мог проверить правильность математического рассуждения, необходимо перевести это рассуждение в последовательность высказываний, каждое из которых либо аксиома, либо выводится из предыдущих высказываний посредством применения точных и заранее установленных логических правил.

Рассмотрим пример математического доказательства, выраженного таким образом. Для начала нам нужны некоторые аксиомы, которые будут служить нам отправной точкой. В 1889 году, задолго до открытия парадокса Рассела, итальянский математик Джузеппе Пеано предложил набор аксиом, которые (как он предполагал) позволяют доказать все арифметические истины. Эти аксиомы основывались на операциях сложения (+), произведения (·), а также понятии последующего элемента (обозначаемого буквой S).

Пеано понимал, что последовательность натуральных чисел получается на основе числа 1 посредством повторного применения функции последующего элемента. Таким образом, 2 определяется как последующий элемент для 1, что обозначается S (1) = 2; 3, по определению, — последующий элемент для 2, то есть S (2) = 3; и так до бесконечности.

Для нашего примера достаточно взять две аксиомы Пеано, относящиеся к сложению.

Аксиома 1: каким бы ни было число х, х + 1 = S(x).

Аксиома 2: какими бы ни были числа х и у, S(x + у) = х + S(у).

В первой аксиоме говорится, что последующий элемент числа х всегда получается прибавлением к нему 1. Вторую аксиому можно воспринимать как (x+y) + 1 = x + (y +1). На основе этих двух аксиом докажем, что 4 = 2 + 2.

Логическая структура доказательства того, что 4*2 + 2. Стрелки показывают применения правил вывода.


Но действительно ли нужно доказывать, что 4 = 2 + 2? Разве это не очевидный факт? Хотя это действительно очевидно, по программе Гильберта любое истинное утверждение, не являющееся аксиомой, должно доказываться на их основе. За исключением высказываний, которые явно указаны как аксиомы, нет других утверждений, которые сами по себе считаются истинными.

Итак, докажем, что 4 = 2 + 2, но запишем рассуждение таким образом, чтобы его мог обработать компьютер. Добавим несколько комментариев, чтобы мы, люди, могли следить за идеей (см. схему).

1. S(x + у) = х + S(y) Аксиома 2.

2. S(2 + 1) = 2 + S(1) Подставили х=2 и у= 1 в аксиому 2.

3. S(2 + 1) = 2 + 2 Заменили S(1) на 2 в предыдущем шаге.

Комментарий: в следующих трех шагах представлено небольшое поддоказательство того, что 2 + 1 = 3; таким образом, в шаге 3 мы можем заменить S(2 + 1) на S(3).

4. х +1 = S(x) Аксиома 1.

5. 2 + 1 = S(2) Подставили = 2 в аксиому 1.

6. 2 + 1 = 3 В предыдущем шаге заменили 5(2) на З.

Комментарий: теперь мы можем заменить 5(2 + 1) на 3 в третьем шаге.

7. S( 3) = 2 + 2

8. 4 = 2 + 2 Заменили S(3) на 4 в предыдущем шаге.

Нужна ли такая точность для доказательства того, что два плюс два равно четыре? Да, это необходимо, если мы хотим, чтобы компьютер был способен проверять правильность рассуждений. Компьютер не думает; следовательно, мы должны вести его за руку, шаг за шагом показывая ему, используя заранее установленные правила, что именно мы сделали на каждом этапе рассуждений.


Действительный мир есть мир, постоянно изменяющийся. [...] Но такие изменения, независимо от их силы, никогда не разрушат истинности отдельного логического или арифметического закона.

Рудольф Карнап. «Философские основания физики»


Что будет делать компьютер, чтобы проверить, правильно ли наше доказательство? Для начала он возьмет первое высказывание и проверит, является ли оно аксиомой. Эта проверка происходит от символа к символу, точно так же как текстовый редактор проверяет орфографию, буква за буквой сверяя слова со словарем, загруженным в память компьютера.

Вспомним, что каждое высказывание должно либо быть аксиомой, либо выводиться из предыдущих высказываний. В нашем примере машина убедилась бы, что первое высказывание — это одна из аксиом в списке (первое высказывание должно быть аксиомой, его нельзя вывести из предыдущих высказываний, просто потому что их нет). Компьютер, конечно же, не понимает значения аксиомы, он только проверяет, что первое высказывание присутствует в списке, предварительно в него загруженном.

После первой проверки машина переходит ко второму высказыванию, S(2 + 1) = 2 + S(1), и проверяет, что это не аксиома (поскольку ее нет в списке). Тогда это второе высказывание должно сводиться к первому с помощью какого-либо логического правила. Чтобы осуществить эту проверку, в память компьютера должен быть загружен список правил логики, то есть правил, которые показывают, какие выводы можно сделать из определенных предпосылок (см. схему).

В случае нашего доказательства правило, позволяющее перейти от шага 1 к шагу 2, заключается в том, что если высказывание начинается с «какими бы ни были числа х и y...», то в следующем выражении буквы х и у могут быть свободно заменены любыми числами. В нашем примере буква х заменена числом 2, а у — числом 1.

Эти логические правила находятся вне арифметики, они справедливы для любой области математики, поэтому выражающие их высказывания называются универсально справедливыми высказываниями (или логическими аксиомами, поскольку они выражают правила логических рассуждений).

Мы уже упомянули одно из этих правил. Другие примеры: «если х = у, то у = х» и «если два числовых выражения равны, то любое из них может быть заменено на другое». Именно это — последнее — правило оправдывает переход от шага 2 к шагу 3, где S(1) заменяется на 2.

Схема механической проверки доказательства.


Но когда существует потенциально бесконечное число универсально справедливых высказываний, как мы можем загрузить их все в память компьютера? Если это нельзя сделать, то компьютер неспособен проверить справедливость любого рассуждения, и, следовательно, программа Гильберта оказывается неосуществимой. При этом ни один компьютер не способен содержать бесконечное число высказываний.


ФОРМАЛЬНЫЙ ЯЗЫК

Как программа Гильберта, так и доказательство Гёделя предполагают, что все арифметические высказывания написаны на формальном языке с помощью заранее установленных символов. Существуют возможные варианты символов, один из наборов которых следующий.

Квантор всеобщности, читается «для каждого». Указывает, что обозначаемое свойство справедливо для любого числа.

=>: Символ импликации; «Р => Q» означает «если Р, то Q».

┐:Символ отрицания;"┐ Р" означает "не-Р".

=: Знак равенства.

1: Число один.

S: Означает "последующий элемент".

+; Символ суммы.

(·): Символ произведения.

(): Скобки.

х₁ х₂, х₃,...: Переменные.

В некоторых представлениях предпочитается брать в качестве первого элемента 0, но это не является существенным. При использовании символов, которые мы привели, число 2 записывается как S(1), то есть следующий за 1. Число 3 записывается как S[S(1)], то есть следующий за следующим за 1. И так далее.


К счастью, в теореме о полноте Гёдель доказал, что хотя количество логических правил потенциально бесконечно, любое рассуждение можно осуществить, используя только 12 из них. Если загрузить в память компьютера эти 12 правил, он будет способен проверить правильность любого доказательства.

Когда в начале 1930 года эта теорема была опубликована, казалось, что необходимая логическая основа для программы Гильберта обеспечена: можно механически проверить правильность арифметических доказательств. Проблема, которую оставалось решить, состояла в том, чтобы найти множество аксиом, которое (на основе этих 12 правил) позволило бы доказать все арифметические истины.

Теорема о полноте не произвела на математический мир большого эффекта. Считалось, что Гёдель просто подробно описал доказательство того, что все и так считали верным, — такой большой была вера в успешную реализацию программы Гильберта. Оставалась только проблема нахождения аксиом арифметики.


ТЕОРЕМА О НЕПОЛНОТЕ

Когда была установлена логическая база, дававшая возможность осуществлять доказательства, проверяемые алгоритмически, оставалось только найти аксиомы, которые позволили бы доказать все арифметические истины. К несчастью для программы Гильберта, эта цель недостижима. Теорема, в которой изложена эта невозможность, известна как первая теорема Гёделя о неполноте, или просто теорема Гёделя:

"Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые можно сделать на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом".

Гёдель доказал эту теорему в 1930 году и, как мы уже знаем, впервые открыто изложил ее на конгрессе в Кёнигсберге 7 сентября того же года. Статья с выведением доказательства была послана в журнал Monatshefte für Mathematik und Physik ("Ежемесячник по математике и физике") в ноябре и появилась в томе 38 (1931). Значение этой публикации для логики сравнимо только с "Метафизикой" Аристотеля. Изложение доказательства было таким ясным и прозрачным, что не вызвало ни малейшей полемики.