Хаос и структура — страница 39 из 63

Поскольку математика оперирует реальными величинами, она применяет спокойно эти взгляды. Для земной механики масса Земли является бесконечно великой; в астрономии земные массы и соответствующие им метеоры рассматриваются как бесконечно малые; точно так же расстояния и массы планет Солнечной системы являются в глазах астрономии ничтожно малыми величинами, лишь только она оставляет пределы Солнечной системы и начинает изучать строение нашей звездной системы» (Энгельс. Анти–Дюринг. 1938. 275—278).

15. ИНФИНИТЕЗИМАЛbНО–ЛОГИЧЕСКИЙ СЛОВАРb

На этом мы закончим наше краткое сообщение о применении метода бесконечно–малых к логике. Вернее, это не сообщение, а только предложение, только скромный намек на ту область, которая не может не быть огромной. Логика и математика не могут настолько расходиться между собою, чтобы не иметь ничего общего в своих построениях. И во всяком случае, логика не имеет никакого права настолько отставать от математики, чтобы совершенно не иметь никакого представления о том, что сейчас творится в математике. С другой стороны, те, кто любит говорить фразы о базировании философии на науке, должны же когда–нибудь перейти от фраз к делу, если только они считают математику за науку. О несовершенствах нашего предложения нечего распространяться. Они очевидны и так. Но следует во всяком случае усвоить то, что сама категория бесконечно–малого и сам метод бесконечно–малых уж во всяком случае необходимы в логике. Они, конечно, нисколько не заменяют других методов, ибо сама же математика содержит много других, принципиально различных методов, не говоря уже о науках нематематических. Мы, однако, хотели перейти от фраз к делу по крайней мере на одной науке, да и то из этой науки взяли только один метод, чтобы применить его в логике и тем базировать философию на науке хотя бы в этом отдельном вопросе. Дело других исследователей предложить еще другие математические методы в логике и даже другие нематематические.

В качестве заключения и резюме мы только хотели бы дать примерный словарик математических и логических категорий, твердо веря, что если не это соответствие, то во всяком случае какое–то другое должно необходимо быть между обеими науками.

Вот какие математические категории мы изучили в предыдущем и вот каков их перевод на язык логики.

отношение функции к х аргументу


.--отношение приращений функции и аргумента, или тангенс угла наклона секущей данной кривой, соединяющей две крайние точки ее нарастания, к оси х-ов


отношение бесконечно-малых приращений функций и аргумента, или отношение их непрерывных становлений[217]


то же самое, что и предыдущая категория, но с выдвиганием предела этого отношения, иначе — производная, или тангенс угла наклона касательной данной кривой к оси х-ов


Математический анализЛогика
1. x—независимое переменное, аргумент (геометрически— абсцисса)1. Материальные вещи
2. у—функция от χ (геометрически —ордината)2. Отражение материи (в частности, обобщенно-существенное в мышлении)
3. 3. Познание
4. Непрерывность4. Чистая, неразличимая в себе и абсолютно текучая чувственность
5. ∆x—произвольное (в частности, конечное) приращение аргумента5. Конечное изменение вещи (конечное различение в чувственном предмете)
6. ∆y—соответствующее приращение функции6. Конечное изменение отражения, или выражение его в видовом понятии (конечное различение в чувственном опыте)
7 7. Чувственное познание конечных и неподвижных вещей при помощи дробления родовых понятий на твердые и неподвижные виды
8. Те же ∆x и ∆y, рассматриваемые как бесконечно-малые приращения аргумента и функции8. Бесконечно-малое изменение вещи и зависящее от него бесконечно-малое изменение отражения (или ее родового понятия)
9. 9. Чувственное познание непрерывного и бесконечного становления вещей
10. 10. Закон чувственного познания непрерывного и бесконечного становления, или принцип становления видовых понятий из данной родовой общности, или «основание деления» родового понятия
11. Дифференцирование, или нахождение производной11. Нахождение принципа непрерывного становления частностей из общего
12. Дифференциал12. Спецификум частности, или «видовое различие», для непрерывно становящихся видов данного родового понятия
13. Интегрирование13. Нахождение принципа непрерывного становления родовой общности из частностей
14. ƒx dx—неопределенный интеграл, или результат действия, обратного дифференцированию, или интеграл как функция своего верхнего предела, или—геометрически — получение семейства бесконечного количества кривых из производной (п. 10)14. Родовая общность, возникающая из исследования принципа непрерывного становления видовых понятий и примененная к бесконечному числу всевозможных частностей в качестве принципа их познания
15. Определенный интеграл, или интеграл как предел суммы; геометрически—длина кривой, площадь, объем15. Закон непрерывного становления родовой общности из суммы бесконечного количества бесконечно близко сходящихся видовых частностей и результат[218] их познания

16. ЗАКЛЮЧИТЕЛbНЫЕ ЗАМЕЧАНИЯ

1. Мы рассмотрели самые элементарные категории математического анализа. Ясно, что дальше должны последовать и более сложные категории. Такая, напр., категория, как ряды, или такие, напр., специальные интегралы, как интегралы Эйлера или Коши, или современные интегралы Стильтьеса, Лебега и др., насколько можно предполагать, дают замечательные аналогии для логики.

Все это требует, однако, дальнейшего и очень упорного исследования.

С другой стороны, необходимо иметь в виду, что во всем нашем исследовании мы касались исключительно только логики понятия и понимали инфинитезимальные процессы только как становления внутри понятия (род, видовое различие, вид, основные деления). Еще предстоит применить метод бесконечно-малых к учению о других структурах мышления, и прежде всего к суждению, умозаключению, доказательству и науке. Кроме того, метод бесконечно-малых должен быть применен к проблеме не специально логической, но близкой к ней феноменологической, а именно к проблеме целого и частей. В предыдущем мы касались этого только случайно. Наконец, необходимо привлечь метод бесконечно-малых, и не только в чисто математическом смысле. Если понимать функцию, производную, дифференциал и интеграл не чисто количественно, но широко материально, то такой метод бесконечно–малых мы найдем очень часто даже и в таких науках, которые не имеют ничего общего с математикой и механикой. Таковы, напр., биология и история. Маркс в своем «Капитале» все время оперирует с такими понятиями, которые не застыли и не одеревенели в своей формально–логической метафизичности, но представляют собой именно переменные величины, т. е. нечто текучее и развивающееся (таковы категории продукта, товара, стоимости, цены, труда и т.д.). Изучение того, как применяется метод бесконечно–малых в нематематических науках, должно богатейшим образом расширить нашу логику и вывести ее наконец из формально· логического тупика и коснения в отрыве от реальной практики наук. Только тогда можно будет говорить о марксистско–ленинском построении логики как строгой и объективно–реальной науки, и только тогда рассуждения об отражении бытия в мышлении и о подвижности самого мышления перестанут быть пустой фразой.

2. Наше исследование, являясь пропедевтическим, дает нечто и для систематического построения логики на основах учения о бесконечно–малых, хотя и это также отнюдь не является еще нашей задачей, и, самое большее, мы хотели только подвести читателя к этому. Формулируя принципы такой системы, надо особенно хорошо помнить главную установку исследования—это исключение всякого методологического абсолютизма и одностороннего возвеличивания какого–нибудь одного метода. Как не может претендовать на абсолютное самодержавие объемная логика, так же были бы смешны всякие притязания на него и со стороны логики содержания, и со стороны логики структурной. И как ни велико значение метода бесконечно–малых, как ни является очередной задачей построение логики учения о бесконечно–малых и даже прямо инфинитезимальной логики в систематическом виде, все же отрицание и даже простое отодвигание прочих методов и систем было бы грубейшей ошибкой мысли и непростительным ретроградством в условиях современного развития логики. Никаких абсолютистских притязаний и никакой методологической исключительности ни в каком случае не может быть допущено. Но как существует самостоятельное учение о цвете и звуке, несмотря на то что всякий цвет и звук есть цвет и звук какого–нибудь тела, точно так же может быть и должна быть построена в систематическом виде логика бесконечно–малых, несмотря на то что в действительности эта логика существует только как целое вместе с другими типами логики и несмотря на то что непрерывность имеет место в своем непрерывном единстве и даже тождестве с прерывностью и скачкообразностью.

Хорошо помня эту заповедь против методологического абсолютизма, мы без вреда для дела и без всякой опасности метафизического гипостазирования можем приступить к системе логики бесконечно–малых. И мы надеемся, что под руководством марксистско–ленинской теории эта инфинитезимальная логика в своем систематическом виде будет построена у нас в ближайшем будущем.

НЕКОТОРЫЕ ЭЛЕМЕНТАРНЫЕ РАЗМЫШЛЕНИЯ К ВОПРОСУ О ЛОГИЧЕСКИХ ОСНОВАХ ИСЧИСЛЕНИЯ БЕСКОНЕЧНО-МАЛЫХ

I. ЛОГИКА ИСЧИСЛЕНИЯ БЕСКОНЕЧНО–МАЛЫХ КАК ОТРАЖЕНИЕ СОЦИАЛbНОЙ ДЕЙСТВИТЕЛbНОСТИ