Если простые правила могут предсказать лавины, то, возможно, они также смогу предсказать сердечные приступы? Рассмотрим решение, которое должен принять врач, когда пациент обращается в отделение неотложной помощи с серьезной болью в грудной клетке. Если пациент находится на ранних стадиях сердечного приступа, его нужно немедленно направлять в профильное отделение для больных с коронарной недостаточностью. Но это дорого, есть риск осложнений, так как больницы являются благодатной почвой для заболеваний, устойчивых к лекарствам, и также неудобно для любого пациента, который в действительности нуждается лишь в таблетке от расстройства желудка и отдыхе. Существует множество других тестов, которые можно провести, множество других способов, которые позволят поставить диагноз[231].
Исследователи из Мичиганского университета во главе с Ли Грином изучили процесс принятия решений врачами в подобных ситуациях. Они обнаружили, что доктора склонны действовать с наименьшим риском — до такой степени, что они с равной вероятностью направляли пациентов без сердечного приступа и пациентов с сердечным приступом. Они также могли и рискнуть.
Ответом исследователей стало составление сложного диагностического руководства: таблицы вероятностей, дополненной удобным карманным калькулятором. Руководство требовало от докторов выполнить некоторые тесты, использовать таблицу, вводить цифры в калькулятор и затем определить вероятность того, что пациент нуждается в срочной коронарной помощи. Это руководство было успешным: оно позволило врачам серьезно сократить количество ошибочных направлений, лишь немного увеличив число пострадавших от сердечного приступа, которые были направлены неверно. Конечно, это болезненный компромисс, но в медицине их полно. Более серьезная проблема заключалась в том, что руководство было слишком сложным, чтобы заинтересовать врачей.
Поэтому Ли Грин с коллегами разработали простое дерево решений, избавившись от многих деталей в диагностической таблице и сфокусировавшись на более очевидных подсказках. Дерево решений содержало три вопроса с ответами «да/нет». Первый вопрос: показывает ли кардиомонитор конкретные аномалии пациента? Если да — бегом в отделение коронарной помощи. В противном случае вопрос второй: основная жалоба пациента связана с болью в груди? Если нет, необходимости в коронарной помощи нет. В случае положительного ответа третий вопрос укажет врачу на необходимость искать одну из пяти очевидных подсказок — любой из них достаточно для того, чтобы отправить пациента в профильное коронарное подразделение.
Дерево решений можно записать на небольшой карточке. В отличие от сложного алгоритма, оно не требует использования калькулятора. Но оно работает. Фактически кажется, что оно работает лучше, чем врачи или сложное диагностическое оборудование, отправляя практически каждого пациента с сердечным приступом за профильной помощью (даже в большей степени, чем врачи, настроенные подстраховаться), но выдавая меньше ложных результатов, чем диагностическое оборудование. Что еще более важно, данный метод экономит время и силы в срочной ситуации: это значит, что, в отличие от сложного диагностического аппарата, к нему можно привыкнуть{39}.
Схожим образом можно описать абсолютно другую проблему выбора оптимального набора инвестиций — к примеру, когда мы откладываем деньги на пенсию. В 1952 году молодой профессор финансов Гарри Марковиц работал над сложным методом выбора оптимального финансового портфеля, а также минимизации любого ожидаемого возврата или максимизации ожидаемого возврата при любом заданном риске. Базовая идея проста: если вы покупаете акции в компании, производящей зонтики, и у производителя солнечных очков, ваши дела будут идти хорошо при любой погоде. Детали, конечно, более продуманны — настолько, что позволили Марковицу получить Нобелевскую премию по экономике.
Хотя о последнем есть забавная история: вскоре после публикации своей теории он начал работу над пенсионным сберегательным планом и должен был выбрать оптимальный набор инвестиций для собственного выхода на пенсию. Это было идеальной возможностью воплотить блестящую теорию на практике. Но он отверг эту возможность и вложил половину своих денег в акции, а половину — в облигации. Эту историю часто называют идеальной иллюстрацией идеи о том, что экономическую теорию до конца сложно понять даже тем, кто ее создал.
И все же тут есть ирония внутри иронии.
Марковиц-инвестор был все время прав. Ошибался Марковиц-теоретик с Нобелевской премией по экономике. Причина была в том, что теория Марковица идеальна в том случае, когда предоставляет бесконечные объемы данных, но она может не оправдать ожиданий в ситуации с более ограниченной информацией.
Рассмотрим, например, акции двух нефтяных компаний. Теория Марковица предполагает, что мы понимаем, каким образом курс этих акций имеет тенденцию изменяться по отношению друг к другу, — тогда она предложит эффективный набор акций обеих компаний. Но как именно работает эта зависимость? Оглядываясь назад, мы видим периоды, когда курсы движутся синхронно: цены на нефть растут — курс акций растет; цены на нефть падают — и курс акций с ними. Но есть ситуации, например с разливом нефти, как при катастрофе на «Глубоководном горизонте» в 2010 году, когда акции причастной компании упадут, а конкуренты будут в порядке. Хотя история и является своего рода руководством, но она не идеальна — особенно если оценивать вероятность уникальных событий (по определению в архивах вы найдете немного упоминаний о них — возможно, вообще ни одного).
Недавнее исследование показывает, что при наличии ограниченных данных железное правило Марковица — разделить активы в равном количестве между такими категориями, как акции, облигации и собственность, — превосходит Нобелевскую теорию Марковица. Что мы подразумеваем под «ограниченными данными»? Все, что включается в отрезок меньше 500 лет, вероятно, ограниченно настолько, чтобы решить исход дела в пользу железного правила[232].
Вновь мы видим параллель с предписаниями Базеля II. Как и нобелевская теория Марковица, они требовали множество данных, чтобы быть устойчивыми. Эти данные отсутствовали. Модели рисков, которые использовали банки в начале 2000-х, — те, которые Базель II поощрял к использованию, — могли ссылаться только на информацию пятилетней давности, которая при этом включала сотни тысяч параметров. Невероятно сложные статистические структуры были построены на самом зыбком фундаменте.
Такая проблема известна как чрезмерно близкая подгонка — она возникает, когда детализированный статистический анализ слепо повторяет исторические данные. Представьте диаграмму разброса с прямой или сглаженной кривой, проходящей сквозь облако точек, чтобы выявить эту тенденцию. Прямая с чрезмерно близкой подгонкой выглядит, скорее, как головоломка типа «соедини точки», где определяется закономерность сердечных приступов или лавин, которой на самом деле нет. Когда поступают новые данные — новые точки, они с меньшей вероятностью возникнут рядом с изгибающейся кривой. Сложные правила похожи на прямую с чрезмерно близкой подгонкой: разработаны задним числом, но с низкой способностью прогнозирования. Более простое правило — нарисованная прямая или сглаженная кривая — тоже не подходит для прежним данных, но зачастую работает лучше, когда поступают новые.
Создание более сложных целей не может быть решением. Сложный показатель с такой же вероятностью будет обманут, и простое железное правило зачастую представляет точное руководство к пониманию происходящего.
В таком случае проблема возвращается к обману. Лавины и сердечные приступы не могут обмануть систему, которая распознает их, — они могут быть опасны, но они не врут. Но что произойдет, если регуляторы Базеля просто сделают вывод из анализа Энди Халдана, что они должны порвать сотни страниц правил и заменить их на одно — об ограничении суммы, которую банк может брать взаймы по отношению к капиталу? Мы бы вернулись к записи на прием Тони Блэра. Так или иначе банки найдут способ обойти простое правило левериджа.
Так же как вопрос «Сколько банк взял взаймы?» является хорошим железным правилом, когда банки не пытаются добиться этой цели, вопрос «Сколько пациентов попадут на прием в течение 48 часов?», вероятно, является хорошим правилом по общей оценке качества хирургов, которые не знают, что проходят проверку. «Сколько бригад скорой помощи прибудет в течение восьми минут?», вероятно, представляет собой отличную лакмусовую бумажку для оценки качества услуг скорой помощи, но при условии, что у последних нет целей с такой формулировкой.
К счастью, существует старое решение проблемы — и оно знакомо каждому студенту.
Задумайтесь о том, как работает система экзаменов. Вы учитесь месяцами или годами, зная, что лишь маленькая доля знаний, собранных вами, понадобится на финальном экзамене. Как говорил философ Джереми Бентам в 1830 году, когда размышлял над экзаменами гражданской службы, неопределенность экзаменационного билета подразумевает «невозможность знания» того, как обмануть систему экзаменов. Единственный ответ узнать это «невозможное» знание — усердно работать и пытаться преуспеть во всем[233].
Ответ представляет собой не увесистую книгу правил Базеля и не одно простое железное правило. Мы должны определить множество железных правил и преднамеренно оставить некую неопределенность того, какое из них будет применено в каждой конкретной ситуации. К примеру, в случае со службой скорой помощи вы можете использовать «процент звонков, принятых за восемь минут» как показатель для проверки и добавить несколько дополнительных: процент звонков, принятых за 12 минут, или за 20 минут, или 6 минут 37 секунд; соотношение пациентов, которые умерли из-за того, что их случаи не были определены как смертельно опасные; последовательность предоставления услуг в городских и сельских районах и т. д. Вы можете определить сотни железных правил вроде этих. Будет невозможно обмануть их все, так как обман одного ухудшит результаты по второму. Но служба скорой помощи, которая обычно работает эффективно, должна выдавать хорошие показатели по многим из них.