Хаос. Создание новой науки — страница 10 из 70

Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, раскачивается в любом направлении, не ограничиваясь лишь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы запустить маятник и угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинамиA и В, потом движение перейдет на сторону В и С, и в тот момент, когда отвес, казалось бы, должен притянуться к вершине С, он вновь перепрыгнет к A. Допустим, ученый, изучающий поведение такой игрушки, составит что-то наподобие карты. Запуская маятник, он выберет точку начала движения, а следующую точку обозначит красным, синим или зеленым цветом в зависимости от того, каким из магнитов будет притянут отвес. Каким в итоге получится изображение? Можно ожидать, что на нем проступят области сплошного красного, синего и зеленого цветов – там, где отвес почти наверняка притянется к определенному магниту. Но на рисунке будут видны и такие зоны, где цвета переплетаются бесконечно сложно. С какого расстояния ни рассматривай рисунок, как ни увеличивай изображение, синие и зеленые точки всегда будут соседствовать с красными. Следовательно, движение отвеса в этих областях предсказать практически невозможно.

Ученые, занимающиеся динамикой, традиционно полагают, что описать поведение системы с помощью уравнений – значит понять ее. Что лучше уравнений может передать существенные черты системы? Уравнения, описывающие движение качелей или тех же игрушек, устанавливают связь между углом отклонения маятника, скоростью, преодолеваемым трением и движущей силой. Но из-за того, что в уравнениях присутствует крошечная доля нелинейности, исследователь также обнаружит, что он не в состоянии ответить на простейшие практические вопросы о будущих состояниях системы. С помощью компьютера эти состояния можно смоделировать, быстро просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета быстро нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах.

Но теряется ли на самом деле? Открыв непредсказуемость, Лоренц одновременно обнаружил и некую регулярность. Другим исследователям также удавалось нащупать что-то похожее на структуру в беспорядочном, на первый взгляд, поведении изучаемых систем. Тем, кто не отмахнулся от исследования маятника как объекта, чересчур простого для изысканий, удалось разглядеть весьма интригующие детали. Ученые осознали, что, хотя основное в механизме колебаний маятника уже постигнуто физикой, это знание невозможно применить для прогнозирования долговременного поведения системы. Мелкие детали были уже ясны, а поведение маятника в крупных временных масштабах все еще представлялось загадкой. Рушился традиционный, локальный подход к исследованию систем, подразумевавший рассмотрение каждого элемента в отдельности, а затем соединение их в целое. В отношении маятников, жидкостей, электронных схем и лазеров метод познания, основанный на составлении уравнений, больше не оправдывал себя.

В 1960-х годах дорогой Лоренца шли и некоторые другие исследователи, в числе которых были французский астроном, изучавший орбиты галактик[79], и японский инженер-электронщик, работавший с электронными микросхемами[80]. Тем не менее первая обдуманная и согласованная попытка понять суть отличия глобального поведения от локального исходила от математиков. Среди них был Стивен Смейл из Калифорнийского университета в Беркли, уже известный своими решениями наиболее запутанных проблем многомерной топологии. Когда один из молодых физиков[81] как бы между прочим поинтересовался у Смейла направлением его деятельности, в ответ он услышал всего лишь одно слово, которое буквально ошеломило юношу, показавшись ему чистой воды абсурдом. Смейл изучал осцилляторы![82] Все колеблющиеся системы – маятники, струны, электросхемы – представляют собой ту область знаний, с которой физики «разделываются» еще в самом начале учебы по причине ее простоты. С чего бы прославленному математику тратить время на элементарную физику? Лишь несколько лет спустя молодой человек осознал, что Смейла интересовали нелинейные хаотические осцилляторы. Этот математик видел вещи, недоступные физикам.


Вначале Смейл выдвинул ошибочную догадку. На строгом математическом языке он предположил, что практически все динамические системы в большинстве случаев начинают вести себя вполне понятно и предсказуемо. Но, как он вскоре понял, дела обстояли не так просто.

Смейл был одним из тех математиков, которые не только решают проблемы, но и подкидывают их другим. Знание истории и интуитивное понимание природы подсказывали ему, что появилось множество новых областей знания, достойных внимания математика. Подобно удачливому бизнесмену Смейл оценивал возможные риски и хладнокровно вырабатывал свою стратегию. Словно гамельнский крысолов, он обладал способностью очаровывать и увлекать за собой людей: куда шел Смейл, туда устремлялись многие. Тем не менее его слава не ограничивалась занятиями математикой. В самом начале войны во Вьетнаме он вместе с Джерри Рубином организовал акцию «Международные дни протеста», которая преследовала цель добиться запрета на передвижение армейских составов через Калифорнию. В 1966 году, когда Комиссия по расследованию антиамериканской деятельности пыталась вызвать его на судебные слушания, Смейл уехал на Международный конгресс математиков в Москву. Там он был удостоен Филдсовской премии, самой престижной награды в области математики.

История, случившаяся летом 1966 года в Москве, стала одной из легенд, которые окружали этого удивительного человека[83]. На конгрессе, где собралось пять тысяч математиков, кипели эмоции, разгорались политические страсти, составлялись разнообразные обращения и петиции. Ближе к концу, по просьбе журналиста из Северного Вьетнама, Смейл провел пресс-конференцию прямо на широких ступенях Московского государственного университета. Он начал с осуждения американской интервенции во Вьетнаме, но, заметив радостные улыбки чиновников принимавшей стороны, обрушился и на вторжение советских войск в Венгрию и ущемление гражданских свобод в Советском Союзе. Вскоре после этого Смейл вынужден был объясняться с советскими должностными лицами, а по возвращении в Калифорнию узнал, что Национальный научный фонд лишил его гранта[84].

Смейл был удостоен медали Филдса за выдающиеся исследования в области топологии – раздела математики, который начал бурно развиваться в XX веке, достигнув расцвета в 1950-е годы. Предметом топологии являются те свойства и качества, которые остаются неизменными при деформации геометрических фигур путем скручивания, сжатия или растяжения. Очертания и величина фигур – квадратные или круглые, большие или маленькие – для топологии не столь важны, так как могут быть изменены деформацией. Для тополога представляет интерес другое: есть ли на поверхности фигуры разрывы или отверстия, не имеет ли она форму узла. Топологи работают с поверхностями не только в одно-, двух– или трехмерном евклидовом мире, а в пространствах более высоких размерностей, которые и представить-то себе невозможно. Объекты топологии подобны геометрическим фигурам на растягивающейся листовой резине, и рассматривает она не столько количественные, сколько качественные характеристики, то есть задает вопрос: что мы может сказать о структуре в целом, если не знаем ее конкретных параметров? Смейл разрешил одну из основных задач топологии, имеющих длинную историю, – доказал так называемую обобщенную гипотезу Пуанкаре для пятимерного пространства и пространств большей размерности[85]. Благодаря этому он встал в один ряд с выдающимися коллегами по цеху. Тем не менее в 1960-х годах, оставив топологию, Смейл вступил на неизведанную землю: он занялся динамическими системами.

Возникновение обеих дисциплин – топологии и теории динамических систем – восходит еще к Анри Пуанкаре, который считал их двумя сторонами одной медали. На рубеже веков он последним из великих математиков применил геометрию для описания законов движения в физической вселенной. Пуанкаре раньше всех осознал проблему хаоса. Его работы содержат смутные указания на возможную непредсказуемость, столь же серьезную, какой она предстает и в исследованиях Лоренца. Однако после смерти французского математика топологию ожидал расцвет, а динамические системы – забвение. Даже само понятие вышло из употребления. Предмет, на который обратил свое внимание Смейл, назывался теорией дифференциальных уравнений. Последние использовались для описания непрерывных изменений системы во времени, причем в соответствии с господствующей традицией объекты рассматривались «локально». Подразумевалось, что инженер или физик примет во внимание лишь один набор параметров, описывающих состояние системы в данный момент времени. Смейл, как и Пуанкаре, стремился исследовать явления в глобальном масштабе, желая постигнуть все разнообразие возможностей сразу.

Любая совокупность уравнений, описывающих динамическую систему (в частности, уравнения Лоренца), позволяет установить определенные начальные параметры. В случае с тепловой конвекцией, например, один из заданных параметров характеризует вязкость жидкости. Значительные изменения исходных данных могут повлечь за собой ощутимые перемены в системе: например, вместо того чтобы стремиться к состоянию равновесия, система может начать совершать периодические колебания. Однако ф