[125]. В 1971 году его направили на годичную стажировку в Институт перспективных исследований в Принстоне. Здесь-то он, вместо того чтобы заниматься тем, чем ему следовало, обнаружил себя увлеченно беседующим с биологами Принстонского университета.
Даже сейчас биологи стараются по возможности не прибегать к математике. Те же, кто математику любит и имеет к ней склонность, чаще выбирают саму математику или физику, нежели науки о живой природе. Мэй был исключением из правила. Первоначально его интересы лежали в области абстрактных проблем устойчивости и сложности. Он пытался математически обосновать взаимозависимость этих явлений, существующих в противоборстве и неразрывной связи. Однако вскоре Мэй заинтересовался, казалось бы, несложными вопросами экологии, связанными с поведением отдельных популяций во времени. Невероятно простые модели представлялись ему неизбежным компромиссом. К тому времени, когда Мэй окончательно обосновался на одном из факультетов Принстона (в будущем австралиец станет фактически его проректором по науке), он провел уже не один час, изучая варианты логистического разностного уравнения с помощью математического анализа и примитивного карманного калькулятора.
Как-то, еще в Сиднее, он написал на доске в коридоре уравнение, чтобы над ним подумали аспиранты. Однако уравнение зацепило его самого. «Господи, да что же такое происходит, когда лямбда начинает превосходить точку накопления?» – с напряжением размышлял Мэй[126]. Он пытался уловить, что случается в тот момент, когда коэффициент роста популяции приближается к критической точке и превышает ее. Подставляя различные значения этого нелинейного параметра, Мэй обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего.
Когда задавалось низкое значение параметра, простая модель Мэя демонстрировала устойчивое состояние. При высоком же значении устойчивое состояние терялось и численность популяции начинала колебаться между двумя величинами. Наконец, при чрезмерном увеличении параметра поведение той же системы становилось непредсказуемым. Но почему? Что происходило на границах различных типов ее поведения? Мэй не мог этого понять. (Как, впрочем, и аспиранты.)
Он досконально изучил поведение этого простейшего уравнения, проведя численное исследование с помощью программы, причем она была аналогом программы Смейла: он пытался понять это уравнение целиком – не локально, а глобально. Уравнение было проще всего, что когда-либо изучал Смейл. Казалось невероятным, что возможности такой несложной задачи в генерировании порядка и беспорядка не были изучены вдоль и поперек уже давно. Но они не были. На самом деле программа Мэя стала лишь началом. Он рассмотрел сотни значений параметра, приводя систему в движение и наблюдая, где именно ряд чисел придет к фиксированному значению и случится ли подобное вообще. Он сосредоточивал все больше внимания на рубеже перехода от устойчивого состояния к колебательному. У него словно бы был собственный пруд, где он умело контролировал численность рыб. Используя уравнение xnext = rх (1 – x), Мэй увеличивал значение параметра так медленно, как только мог. Если это значение составляло 2,7, численность популяции равнялась 0,По мере увеличения параметра конечный результат так же медленно увеличивался, образуя на графике кривую, плавно поднимавшуюся слева направо.
Неожиданно, когда значение параметра превысило з, линия раздвоилась. Численность воображаемой стаи рыб в предыдущий и последующий годы перестала быть единой величиной и теперь колебалась между двумя точками. Стартуя с какого-то небольшого значения, она возрастала, а затем начинала колебаться и в итоге приходила к регулярным скачкам вверх и вниз. Небольшой поворот воображаемой рукоятки – небольшое увеличение параметра – еще раз расщеплял колебания, генерируя ряд чисел, приходивших в конечном счете к четырем различным значениям, каждое из которых повторялось с регулярностью раз в четыре года[127]. Теперь компьютерная популяция Мэя увеличивалась и убывала в регулярном четырехлетнем режиме. Длительность цикла вновь выросла в два раза – сначала с одного года до двух, а затем до четырех. И снова это поведение оказывалось устойчивым: какова бы ни была начальная численность популяции, с течением времени она сходилась к одному и тому же четырехлетнему циклу.
Как Лоренц и открыл десятилетием ранее, построение графика – единственное, что позволяет обнаружить в указанных результатах хоть какой-то смысл и представить их наглядно. Мэй сделал предварительный набросок, чтобы охватить все типы поведения системы при различных параметрах. Для значений параметра, возраставших слева направо, была выбрана горизонтальная ось; для численности популяции отводилась вертикальная. Каждое из значений параметра было представлено точкой, обозначавшей конечный результат после достижения системой равновесия. Слева, там, где значения еще были небольшими, результат являл собой лишь точку. Таким образом, изменения параметра отобразились в виде линии, поднимавшейся плавно слева направо. Когда значение параметра миновало первую критическую точку, Мэю пришлось вычертить кривую для двух популяций, поскольку линия раздвоилась, образовав искривленную букву Y или подобие вилки. Такое расщепление соответствовало переходу популяции от однолетнего цикла к двухлетнему.
По мере дальнейшего роста значения параметра количество точек удваивалось вновь и вновь, что просто ошеломляло ученого, поскольку столь сложное поведение таило в себе заманчивую устойчивость. Мэй назвал наблюдаемый феномен «змеей в математической траве». Каждое удвоение соответствовало разветвлению, или бифуркации[128], на графике, и каждое такое разветвление означало, что повторяющаяся последовательность распадалась надвое еще раз. Популяция, ранее бывшая устойчивой, начинала колебаться между двумя различными уровнями каждый второй год. Популяция, менявшаяся в течение двухлетнего цикла, изменялась теперь в течение третьего года и четвертого, переходя, таким образом, к четырехлетнему периоду.
Удвоение периодов и хаос. Вместо применения отдельных диаграмм для демонстрации изменений в популяциях с различной степенью воспроизводства Роберт Мэй, наряду с другими учеными, использовал так называемую бифуркационную диаграмму, чтобы соединить все данные в одном изображении. На диаграмме показано, каким образом изменение одного параметра, в данном случае – коэффициента воспроизводства популяции в дикой природе, влияет на поведение рассматриваемой простой системы в целом. Значения параметра откладывались слева направо по горизонтальной оси; значения конечной численности популяции – по вертикальной. В некотором смысле рост значения параметра знаменует усиление «движущей силы» системы, увеличение в ней нелинейного элемента. Когда это значение невелико (слева), популяция угасает. По мере его роста (в центре)популяция достигает равновесия. Затем, при дальнейшем увеличении параметра, равновесное состояние расщепляется на две ветви, подобно тому как в процессе конвекции дальнейшее нагревание жидкости делает ее нестабильной. Начинаются колебания численности популяции между двумя различными уровнями. Расщепления, или бифуркации, происходят все быстрее и быстрее. Далее система становится хаотичной (справа) – и численность особей может принимать бесконечно много разных значений.
Подобные разветвления наблюдались на графике все чаще и чаще: 4, 8, 16, 32… – и вдруг внезапно прекращались. После определенной точки, «точки накопления», периодичность уступала место хаосу, колебаниям, которые никогда не затухали, и поэтому целые зоны на графике были полностью затушеваны. Наблюдая за популяцией животных, описанной этим простейшим нелинейным уравнением, можно счесть происходящие год за годом перемены совершенно случайными, привнесенными извне. Тем не менее в самой гуще подобной беспорядочности вновь появляются стабильные циклы. Так, хотя параметр продолжает возрастать, увеличивая нелинейность системы, неожиданно обозначается просвет с регулярным, хотя и странным периодом вроде 3 или Модель меняющейся популяции повторяет саму себя в течение трехлетнего или семилетнего цикла. Затем снова, но уже в более высоком темпе, начинаются разветвления, которые удваивают период, быстро минуя новые циклы (3, 6, 12… или 7, 14, 28…) и вновь обрываясь с рождением нового хаоса.
Первоначально Мэй не представлял себе всю картину, однако тех ее фрагментов, которые он смог просчитать, было достаточно, чтобы вызвать беспокойство. В реальной системе наблюдатель видел бы каждый раз лишь вертикальный срез, соответствующий только одному значению параметра, а значит, наблюдал бы только один из типов поведения – может быть, стабильное состояние, может быть, семилетний цикл, а может, видимую невооруженным глазом беспорядочность. Невозможно было бы догадаться, что одна и та же система при небольшом изменении одного из параметров способна обнаружить совершенно непохожие друг на друга типы поведения.
В своей работе «Период три рождает хаос» Джеймс Йорк с математической точностью проанализировал описанные явления, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тройным периодом, то в этой же системе есть как регулярные циклы любой другой продолжительности, так и полностью хаотичное поведение. Это открытие подействовало на физиков вроде Фримена Дайсона словно электрошок, так как противоречило интуиции. Им казалось вполне тривиальной задачей построение системы, которая повторяет саму себя в трехпериодных колебаниях без всякого проявления хаоса. Йорк доказал, что это невозможно.