Эффект Иосифа символизирует постоянство. Наступят семь плодородных лет на земле египетской, и придут после них семь лет голода. Периодичность, если именно о ней идет речь в библейской легенде, конечно, понимается чересчур упрощенно, однако периоды наводнений и периоды засухи действительно настают вновь и вновь. Хотя подобное кажется случайностью, чем дольше та или иная местность страдает от засухи, тем больше вероятность, что засушливые периоды повторятся. Более того, математический анализ колебаний уровня Нила выявил, что подобное постоянство наблюдалось как десятилетиями, так и веками. Два явления – скачки и постоянство – стремятся к противоположным результатам, но сводятся к одному: тенденции в природе вполне реальны, однако способны затухать так же быстро, как и проявляться.
Отсутствие последовательности, внезапные «вспышки» помех, множества Кантора – подобным явлениям не нашлось места в истории геометрии двух прошедших тысячелетий. Формами классической геометрии считаются прямые и плоскости, окружности и сферы, треугольники и конусы. Они воплощают могущественную абстракцию действительности, они вызвали к жизни непревзойденную философию гармонии Платона. Евклид построил на их основе геометрию, известную уже две тысячи лет, и по сей день большинство людей знакомы только с ней. Художники распознавали в таких формах идеалы красоты, астрономы составили из них птолемееву картину мира, но для постижения истинной сложности наука нуждается в ином типе абстракции, нежели тот, что присущ классической геометрии.
Как любил повторять Мандельброт, облака далеки по своей форме от сфер, горы совсем не конусы, а молния отнюдь не придерживается в своем движении прямой линии[151]. Новая гeoметрия отражает грубые и шершавые очертания Вселенной, а не гладкие и круглые. Зарождающуюся науку можно назвать геометрией отверстий, выщербин, разломов и переплетений. Пониманию сложной природы живого мира недоставало одного лишь предположения, что сложность – это не что-то случайное. Истинное проникновение в глубины хаоса требовало безоговорочной веры в то, что интереснейшей чертой, например, разряда молнии является не ее направление, а скорее расположение ее зигзагов. Исследования Мандельброта претендовали на новое видение действительности, указывая на то, что эти странные формы имеют особое значение. Выщербины и сплетения – это не просто какие-то изъяны идеальных форм евклидовой геометрии. Наоборот, зачастую именно они передают саму сущность явлений.
В чем состоит сущность, скажем, линии побережья? Такой вопрос Мандельброт задал в статье «Какова длина береговой линии Великобритании?», ставшей поворотным пунктом в мышлении ученого.
С феноменом береговой линии он столкнулся, изучая малоизвестную работу английского ученого Льюиса Фрая Ричардсона, вышедшую после смерти автора. Последнему удалось отыскать множество поразительных вещей, ставших впоследствии элементами хаоса. Еще в 1920-х годах Ричардсон размышлял о предсказании погоды. Он изучал турбулентность в жидкостях, бросая мешок с белыми цветами в воды канала Кейп-Код, и задавался вопросом «Имеет ли ветер скорость?» в одноименной статье 1926 года. («Спрашивать о таком, на первый взгляд, глупо, но, как оказывается, поучительно», – писал ученый.) Зачарованный изгибами береговых линий и государственных границ, Ричардсон проштудировал энциклопедии Испании и Португалии, Бельгии и Нидерландов и обнаружил, что указанные там протяженности общих границ этих стран различаются от одного справочного издания к другому на 20 %[152].
Анализ, проделанный Мандельбротом, ошеломлял. Посвященные в его результаты испытывали шок от этих умозаключений, не то до боли очевидных, не то до абсурда ложных. Как подметил ученый, на вопрос о длине береговых линий большинство людей дают один из двух стандартных ответов: «Не знаю. Это не по моей части» или «Даже не представляю. Посмотрю в энциклопедии».
На самом деле длина любой береговой линии, объяснял Мандельброт, в известном смысле бесконечно велика. Если подходить с другой стороны, ответ, конечно же, будет зависеть от величины линейки. Рассмотрим один из возможных методов измерения. Топограф, вооружившись циркулем, разводит его ножки на расстояние одного ярда и измеряет линию побережья. Полученный результат будет приблизительным, поскольку циркуль «перешагивает» изгибы и повороты, длина которых меньше ярда, но на результате, который фиксирует топограф, это не отражается. Если он разведет ножки не так широко, скажем на один фут, и повторит процедуру, конечный результат окажется больше предыдущего. Будет «схвачено» больше деталей. Чтобы покрыть расстояние, которое ранее измерялось одним шагом циркуля, потребуется уже более трех шагов длиной в один фут. Топограф записывает новый результат и, разведя ножки на четыре дюйма, снова принимается за дело. Подобный мысленный эксперимент показывает, как можно получить различные результаты при изменении масштаба исследования. Наблюдатель, пытающийся измерить длину береговой линии Великобритании с космического спутника, получит менее точный результат, чем тот, кто не поленится обойти все бухты и пляжи. Последний же, в свою очередь, проиграет улитке, оползающей каждый камешек.
Хотя результат каждый раз будет возрастать, здравый смысл подсказывает, что он неуклонно стремится к некой конечной величине – истинной длине береговой линии. Иными словами, все измерения сойдутся в одной точке. Если бы линия побережья представляла собой одну из фигур евклидовой геометрии, к примеру круг, применение вышеописанного метода сложения отрезков прямой линии, измеренных каждый раз со все большей точностью, оказалось бы успешным. Однако Мандельброт обнаружил, что при бесконечном уменьшении масштаба измерения получаемая длина береговой линии неограниченно растет. В бухтах и на полуостровах обнаруживаются мелкие бухточки и мысики – и так вплоть до размеров крошечного атома. Лишь при достижении атомного уровня измерения подойдут к концу. Возможно.
Фрактальный берег. Береговая линия сгенерирована компьютером. Детали случайны, однако фрактальная размерность постоянна, так что шершавости и неровности выглядят все теми же, независимо от степени увеличения.
Геометрия Евклида, оперирующая длинами, ширинами и высотами, не позволяла постичь сущность неправильных форм, и Мандельброту пришло в голову отталкиваться от идеи размерности, в которой ученые усматривают гораздо больше, чем обыватели. Мы живем в трехмерном пространстве, и это означает, что для определения положения точки нам надо задать три координаты, например долготу, широту и высоту. Оси трехмерного пространства представляют собой три взаимно перпендикулярные линии, пересекающиеся в начале координат. Это все еще территория евклидовой геометрии, где пространство характеризуется тремя измерениями, плоскость – двумя, прямая – одним, а точка имеет нулевую размерность.
Процесс абстрагирования, позволивший Евклиду постичь одномерные и двумерные объекты, может быть с легкостью применен и к явлениям повседневной жизни[153]. Так, с практической точки зрения карта дорог являет собой двумерный объект – фрагмент плоскости, в котором для адекватного отображения объекта задействованы два измерения. Безусловно, реальные дороги трехмерны, как и все остальное, однако их высота столь трудноуловима (и в общем-то несущественна для их эксплуатации), что ее можно не учитывать. Заметим, что карта дорог остается двумерной даже тогда, когда ее сворачивают. Так и нить всегда имеет лишь одно измерение, а частица или точка не имеют его вовсе.
А сколько измерений у клубка бечевки? По мнению Мандельброта, ответ на этот вопрос зависит от уровня восприятия. С огромного расстояния клубочек представляется не более чем точкой с нулевой размерностью. Приближаясь, можно заметить, что он подобен шару и, таким образом, характеризуется уже тремя измерениями. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, скрученное таким образом, что задействуется трехмерное пространство. Вопрос о количестве чисел, необходимых для определения положения точки, остается актуальным: пока мы вдалеке, нам не нужно ни одного, поскольку мы видим лишь точку; приблизившись, мы нуждаемся уже в трех; а подойдя еще ближе, довольствуемся одним, так как любое заданное положение вдоль всей длины бечевки неповторимо, вне зависимости от того, вытянута она или смотана в клубок.
Продвигаясь далее, к более мелким, видимым только под микроскопом деталям, мы обнаружим следующее: бечевка состоит из скрученных трехмерных протяженных объектов, а те, в свою очередь, – из одномерных волокон, вещество которых распадается на частицы с нулевой размерностью. Так Мандельброт, поправ математические традиции, обратился к относительности, заявив: «Представление о том, что численный результат измерений зависит от связи объекта и наблюдателя, вписывается в понятия современной физики и даже является их превосходной иллюстрацией»[154].
Оставив в стороне философию, мы увидим, что реальные измерения объекта оказываются отличны от трех его привычных параметров. Слабым местом выдвинутых Мандельбротом аргументов стало то, что они основывались на слишком смутных понятиях – «издалека» и «чуть ближе». А что наблюдается в промежутке? Бесспорно, провести строгую черту, по пересечении которой клубок бечевки превращается из трехмерного объекта в одномерный, невозможно. Однако проблема с отсутствием строгого определения для этих переходов заставила по-новому взглянуть на вопрос о размерности.
Мандельброт двигался от целочисленных размерностей 0, 1, 2, 3··· к тому, что казалось невозможным, – к дробным. Представление о них было столь экстравагантным, что ученым-нематематикам оставалось только принять его на веру. Тем не менее неожиданный подход оказался чрезвычайно перспективным.