Хаос. Создание новой науки — страница 23 из 70

Самоподобие представляет собой симметрию, проходящую сквозь масштабы, повторение рисунка внутри самого себя. Таблицы Мандельброта, отражавшие изменения во времени цен и уровня рек, обнаруживали самоподобие, поскольку не только демонстрировали похожие детали во все более малых масштабах, но эти детали имели одинаковые измеримые характеристики. Чудовищные фигуры вроде кривой Коха являлись самоподобными, потому что выглядели все теми же даже при большом увеличении. Самоподобие «встроено» в саму технику создания кривых: одно и то же преобразование повторяется при уменьшающемся масштабе. Самоподобие легко распознается, ведь его образы встречаются повсюду в нашей культуре: в бесконечно глубоком отражении фигуры человека, стоящего между двумя зеркалами, или в мультфильме о том, как рыбина заглотила рыбу, которая слопала рыбку, съевшую совсем маленькую рыбешку. Мандельброт любил цитировать Джонатана Свифта:


Натуралистами открыты

У паразитов паразиты,

И произвел переполох

Тот факт, что блохи есть у блох.

И обнаружил микроскоп,

Что на клопе бывает клоп,

Питающийся паразитом,

На нем – другой, adinfinitum[159].


На северо-западе США землетрясения лучше всего изучать в геофизической лаборатории Ламонта – Доэрти, которая размещается в нескольких ничем не примечательных зданиях, затерянных среди лесов на юге штата Нью-Йорк, к западу от реки Гудзон[160]. Именно там Кристофер Шольц, профессор Колумбийского университета, специализировавшийся на изучении формы и строения твердого вещества Земли, впервые задумался о таком явлении, как фракталы.

Хотя математики и физики-теоретики с пренебрежением отнеслись к трудам Мандельброта, Шольц принадлежал как раз к тому типу прагматиков, ученых практического склада, которые готовы были воспринять инструментарий фрактальной геометрии. Имя Мандельброта он впервые услышал в 1960-х годах, когда первооткрыватель фракталов еще занимался экономикой, а сам Шольц был аспирантом в Массачусетском технологическом институте и ломал голову над проблемой землетрясений. За два десятка лет до этого было выявлено, что распределение землетрясений большой и малой силы описывается особой математической моделью, подобной той, что отражает распределение индивидуальных доходов в экономике свободного рынка. Это наблюдение одинаково подходило для любого района земного шара, где бы ни подсчитывали число толчков и ни измеряли их силу. Принимая во внимание, сколь беспорядочны и непредсказуемы были сотрясения земной коры во всех других отношениях, имело смысл попытаться понять, какие именно физические процессы обуславливают подобную регулярность. По крайней мере, так думал Шольц. Многие другие сейсмологи довольствовались констатацией факта.

Шольц не забыл имени Мандельброта, и когда в 1978 году ему на глаза попалась богато иллюстрированная и напичканная уравнениями книга «Фракталы: форма, случайность и размерность», он купил этот труд – собрание весьма причудливых мыслей. Казалось, Мандельброт свалил туда в беспорядке все свои знания и гипотезы о Вселенной. За несколько лет эта работа и ее второе, расширенное и дополненное издание «Фрактальная геометрия природы» разошлись тиражом, какого не имела ни одна другая работа по высшей математике. Ее заумный стиль изложения вызвал раздражение, хотя местами сухая непроницаемость авторской манеры разбавлялась удачно сформулированными, остроумными и небанальными замечаниями. Мандельброт называл свою работу «манифестом и сборником примеров»[161].

Один из немногих упрямцев, среди которых большинство составляли естественники, Шольц несколько лет размышлял над тем, какую пользу можно извлечь из этой книги. Вопрос был не столь очевидным. По выражению Шольца, «Фракталы» были «не практическим руководством, а книгой восторгов»[162]. Он, впрочем, интересовался поверхностями, а о них рассказывалось буквально на каждой странице. Так и не сумев выкинуть из головы открытия Мандельброта, Шольц попытался применить фракталы к описанию, классификации и измерению геофизических объектов.

Вскоре Шольц понял, что не одинок в этом, хотя до созыва многолюдных конференций и семинаров должно было пройти еще несколько лет. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавших, как систематически их интерпретировать. Откровения фрактальной геометрии указали путь специалистам, исследовавшим слияние и распад всевозможных объектов. Ее методы как нельзя лучше подходили для изучения материалов: шероховатых поверхностей металлов, крошечных отверстий и канавок в ноздреватом старом камне, фрагментированных пейзажей зоны землетрясения.

Как представлял себе Шольц, в компетенцию геофизиков входило описание поверхности Земли – поверхности, чье соприкосновение с океанами формирует береговую линию. Твердая земная кора включает в себя зоны разрывов и расселин. Сдвигов, изломов и трещин на каменном лике Земли такое количество, что именно они дают ключ к тайнам планеты. Для постижения этих тайн они значат больше, чем слагающие земную кору горные породы. Расселины пересекают поверхностный слой нашей планеты в трех измерениях, образуя то, что Шольц назвал «распадающейся оболочкой». Эта оболочка регулирует циркуляцию в земной коре воды, нефти, природного газа. Она влияет на землетрясения. Постижение свойств поверхностей представляло собой задачу первостепенной важности, но Шольц полагал, что его наука зашла в тупик. Откровенно говоря, не от чего было даже оттолкнуться.

Геофизики рассматривали поверхности так, как их рассматривал бы кто угодно – как некоторые геометрические формы. Например, поверхность может быть плоской. Или может иметь некоторую конкретную форму – скажем, можно рассмотреть поверхность в форме автомобиля «Фольксваген-жук». Ее можно измерить традиционными методами евклидовой геометрии, описать уравнением. Однако Шольц был убежден, что при таком подходе мы словно бы рассматриваем поверхность в узком спектральном диапазоне, доступном нашему зрению. Это все равно что обозревать Вселенную сквозь красный фильтр – мы увидим только то, что возможно увидеть при данной длине волны, и упустим все, что воспринимается в других цветах, при иных длинах волн, не говоря уже о прочих частях спектра, например инфракрасном излучении или радиоволнах. В этом примере спектр соответствует масштабу. Рассматривать поверхность автомашины, используя евклидову геометрию, значит воспринимать ее лишь с позиции наблюдателя, находящегося в десятке или сотне метров от объекта. А что он увидит на расстоянии одного или ста километров? Одного миллиметра? Одного микрона?

Представьте себе, что наблюдаете поверхность земного шара из космоса, с расстояния в сто километров. Линия поверхности то опадает, то вздымается, огибая деревья, бугорки, здания и – где-нибудь на автостоянке – «фольксваген». В таком масштабе автомобиль – лишь одна из многочисленных выпуклостей, кусочек случайности.

Или вообразите, что мы придвигаемся к машине все ближе и ближе, рассматриваем ее в лупу или даже в микроскоп. Сначала, по мере того как округлость бамперов и капота пропадает из поля зрения, очертания становятся более плавными. Затем проявляются бугорки на поверхности стального корпуса. Расположение их произвольно, оно кажется хаотическим.

Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Металлурги обнаружили то же самое в отношении поверхностей различных типов стали. В частности, фрактальная размерность поверхности металла зачастую позволяет судить о его прочности. Фрактальная размерность ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Шольц размышлял о классической геологической формации – об осыпи на склоне горы. С большого расстояния она кажется одной из двумерных евклидовых форм, тем не менее геолог, приближаясь, обнаруживает, что двигается не столько по поверхности такой формы, сколько внутри нее. Осыпь распадается на валуны размером с легковую машину. Ее действительная размерность составляет уже около 2,7, поскольку каменистые поверхности, загибаясь и сворачиваясь, занимают почти трехмерное пространство, подобно поверхности губки.

Фрактальные изображения незамедлительно нашли применение при изучении целого ряда проблем, связанных со свойствами контактирующих поверхностей. Например, соприкосновение автомобильных покрышек и бетона – достаточно сложный предмет для исследования, как и соединение узлов или электрических контактов в механизмах. Свойства соединенных поверхностей совершенно отличны от свойств задействованных при этом материалов. Различие обуславливается характером фрактального наложения составляющих поверхности бугорков. Один из простых, но весьма важных постулатов фрактальной геометрии состоит в том, что контактирующие поверхности соприкасаются далеко не везде: соприкосновению препятствует их бугристость, прослеживаемая в любом масштабе. Даже в скале, подвергшейся огромному давлению, при достаточно большом увеличении можно заметить крошечные промежутки, сквозь которые просачивается жидкость (Шольц назвал это «эффектом Шалтая-Болтая».) Именно поэтому никогда не удается соединить осколки разбитой чашки. Даже если они, на первый взгляд, совпадают, при большем увеличении становится видно, что беспорядочно расположенные бугорки просто не сходятся.

В своей области Шольц стал известен как один из немногих, кто принял фракталы на вооружение. Он понимал, конечно, что некоторые коллеги считают его занятия чудачеством. Включив в название статьи термин «фрактальный», он стал ловить на себе как восхищенные, так и осуждающие взгляды. Одни признавали его новатором, в то время как другие считали всего лишь конъюнктурщиком, примкнувшим к модному научному направлению. Даже написание работ давалось Шольцу мучительно трудно в силу необходимости решать, хочет ли он найти понимание только у горстки единомышленников или же у широкого круга геофизиков, которым приходилось растолковывать основные понятия. И все же Шольц не желал отказываться от арсенала фрактальной геометрии.