Хаос. Создание новой науки — страница 31 из 70

аточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, задействовали одно измерение. Они позволяли обойтись единственным числом – значением температуры или численности популяции, – которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Урезанная система Лоренца, описывавшая конвекцию в жидкостях, имела три фазовые координаты, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.

Даже топологу с самой развитой фантазией нелегко представить себе пространства, обладающие четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с этим беспощадным и необоримым чудищем, образ которого Ландау использовал для того, чтобы выразить суть турбулентности, и которому присущи бесконечное число колебаний, бесконечное число степеней свободы, бесконечное количество измерений?

Физики имели вполне вескую причину относиться с неприязнью к модели, поведение которой в природе столь неясно. Используя нелинейные уравнения, описывающие движения жидкости, мощнейшие суперкомпьютеры мира не могли точно отследить турбулентный поток даже одного кубического сантиметра жидкости в течение более чем нескольких секунд. Конечно, виновата в этом больше природа, нежели Ландау, тем не менее предложенная советским ученым схема производила эффект «поглаживания против шерсти». Даже не имея сколько-нибудь солидных знаний, физик вполне мог заподозрить, что тут есть какой-то еще не открытый принцип. Подобное ощущение выразил словами великий теоретик квантовой физики Ричард Фейнман: «Меня всегда беспокоило, что, согласно физическим законам, как мы понимаем их сегодня, требуется бесконечное число логических операций в вычислительной машине, чтобы определить, какие процессы происходят в сколь угодно малой области пространства за сколь угодно малый промежуток времени. Как может все это уложиться в крохотном пространстве? Почему необходима бесконечная работа логики для понимания того, что произойдет на крохотном участке пространства-времени?»[203][204]

Как и многие из тех, кто занимался хаосом, Давид Рюэль подозревал, что видимые в турбулентном потоке объекты – перепутанные струи, спиральные водовороты, волшебные валы, появляющиеся и исчезающие, – должны отражать то, что объяснялось законами физики, но все еще принадлежало к сфере неоткрытого[205]. В его понимании рассеивание энергии в турбулентном потоке должно было вести к своеобразному сжатию фазового пространства, притягиванию к аттрактору. Бесспорно, аттрактор при этом не оставался неподвижной точкой, поскольку поток никогда не приходил в состояние покоя – энергия поступала в систему и уходила из нее. Каким еще мог быть аттрактор? Согласно догмату, существовал лишь один возможный тип: периодический аттрактор, или замкнутая кривая, орбита, притягивающая все близлежащие орбиты. Если маятник получает энергию от пружины и теряет ее из-за трения (то есть если маятник одновременно приводится в движение и тормозится), то устойчивая орбита может представлять собой замкнутую петлю в фазовом пространстве, отражающую, например, регулярные колебательные движения маятника старинных часов. Неважно, откуда именно начнет двигаться маятник, в конечном счете он придет именно к данной орбите. Но придет ли? При некоторых начальных условиях (они характеризуются минимумом энергии) маятник остановится. Таким образом, получается, что система в действительности имеет два аттрактора, один из которых является замкнутой петлей, а другой – фиксированной точкой. Каждый из аттракторов имеет собственный «бассейн притяжения» в фазовом пространстве. В целом это напоминает две речные долины, разграниченные водоразделом.

В краткосрочной перспективе каждая точка фазового пространства может означать возможное поведение динамической системы. В долгосрочной же перспективе единственными возможными моделями поведения становятся сами аттракторы. Все иные типы движения преходящи. По определению аттракторам присуще важнейшее качество – устойчивость. В реальной системе, где движущиеся элементы сталкиваются и колеблются из-за помех окружающей среды, движение стремится вернуться к аттрактору. Толчок способен ненадолго исказить траекторию, однако возникающие случайные движения быстро исчезают: даже если вдруг кошка заденет часы с маятником, минута не увеличится до шестидесяти двух секунд. Однако турбулентность в жидкостях – явление иного порядка, никогда не порождающее единственный ритм, исключающий все остальные. Известное свойство такого явления заключается в том, что одновременно наблюдается весь спектр возможных колебаний. Турбулентность можно сравнить с так называемым белым шумом или с помехами. Мог ли подобный феномен являться результатом простой детерминистской системы уравнений?

Рюэль и Такенс задались вопросом, обладает ли какой-либо иной тип аттрактора подходящим набором характеристик: устойчивостью, малым числом измерений, непериодичностью. Устойчивость означала достижение конечного состояния системы вопреки всем помехам в полном шумов мире. Малое число фазовых координат предполагало, что орбита в фазовом пространстве должна быть ограничена либо прямоугольником на плоскости, либо параллелепипедом в трехмерном пространстве и обладать лишь несколькими степенями свободы. Непериодичность подразумевала отсутствие повторений – ничего общего с монотонным тиканьем старых дедушкиных часов. С геометрической точки зрения вопрос казался чистой воды головоломкой. Какой вид должна иметь орбита, изображаемая в ограниченном пространстве, чтобы она никогда не повторяла и не пересекала саму себя? Ведь система, вернувшаяся в свое прежнее состояние, согласно принятой модели, должна повторять уже пройденный путь снова и снова. Чтобы воспроизвести каждый ритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади. Другими словами, она должна стать фрактальной – хотя этого слова еще не существовало.

Следуя математической логике, Рюэль и Такенс провозгласили, что описанный феномен должен существовать. Хотя они никогда не видели и не изображали его, одного заявления оказалось довольно. Впоследствии, выступая с речью на пленарном заседании Международного конгресса математиков в Варшаве и пользуясь преимуществом высказать суждение задним числом, Рюэль заявил: «Научное сообщество весьма прохладно отнеслось к нашему предположению. В частности, упоминание о том, что непрерывный спектр будет ассоциироваться с незначительным числом „степеней свободы“, многие физики посчитали просто ересью»[206]. Но были и другие – горсточка, если уж быть точными, – которые почувствовали всю значимость вышедшей в 1971 году работы и продолжили развивать идеи, намеченные в ней.


На самом деле к 1971году в научной литературе уже имелся один небольшой набросок того невообразимого чудовища, которое пытались оживить Рюэль и Такенс. Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 году[207]. Этот образ представлял собой конструкцию из двух кривых – одна внутри другой – справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, иллюстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.



Первый странный аттрактор. В 1963 году Эдвард Лоренц смог вычислить только первые несколько петель аттрактора для своей простой системы уравнений. Однако он понял, что переплетение двух спиралеобразных «крыльев» должно иметь необычную структуру на бесконечно малых масштабах.


Аттрактор был устойчивым, непериодическим и имел малое число измерений. Он никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодическую петлю. Но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри участка пространства, ограниченного рамками параллелепипеда. Как такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?

До того как изображения фракталов Мандельброта буквально наводнили научный мир, представить особенности построений подобных форм казалось весьма трудным. Сам Лоренц признавал, что в его собственном экспериментальном описании присутствовало «кажущееся противоречие». «Очень непросто слить две поверхности, если каждая содержит спираль и траектории не стыкуются», – сетовал ученый[208]