Хаос. Создание новой науки — страница 32 из 70

. Однако в массе компьютерных вычислений он все же разглядел слабо просматривавшееся решение. Лоренц понял, что, когда спирали начинали сходиться, поверхности должны были разделяться, образуя отдельные слои на манер теста в слоеном пирожном. «Мы видим, что каждая поверхность состоит на самом деле из двух, так что, когда они сходятся, поверхностей становится уже четыре. Проследив за аналогичным процессом с другой петлей, мы замечаем, что теперь поверхностей уже восемь, и так далее. В итоге мы можем заключить, что налицо бесконечное множество поверхностей, каждая из которых находится чрезвычайно близко к одной из двух изначально сходящихся поверхностей». Неудивительно, что в 1963 году метеорологи оставили подобные рассуждения без внимания. Десятилетие спустя Рюэль, узнав о труде Лоренца, был ошеломлен и взбудоражен. Впоследствии он посетил Лоренца, однако вынес из той встречи чувство легкого разочарования[209]. Общие научные интересы исследователи обсуждали совсем недолго; с характерной для него робостью Лоренц постарался придать визиту светский характер: ученые с женами посетили художественный музей.

Пытаясь отыскать ключи к решению загадки, Рюэль и Такенс пошли двумя путями. Одним стала попытка дать теоретическое обоснование странным аттракторам. Являлся ли аттрактор Лоренца типичным? Возможны ли какие-то иные формы? Вторым путем, по которому пошли ученые, была экспериментальная деятельность. Она преследовала цель подтвердить или опровергнуть весьма далекое от математики убеждение, что странные аттракторы применимы к хаосу в природе.

В Японии, исследуя электронные схемы, имитировавшие колебание механических струн, но в ускоренном темпе, Ёсисукэ Уэда обнаружил последовательности невероятно прекрасных странных аттракторов. (И ему пришлось получить восточную версию прохладного отклика коллег, с которым в свое время столкнулся Рюэль: «Ваш результат есть не что иное, как вариант периодических колебаний. Нет никакой нужды разводить собственную концепцию устойчивых состояний»[210].) В Германии Отто Рёсслер, непрактикующий доктор медицины, пришедший к исследованию хаоса через химию и теоретическую биологию, предпринял необычную попытку, отодвинув математику на второй план, взглянуть на странные аттракторы сквозь призму философии. Его именем стали называть один из простейших аттракторов – узкую ленту со сгибом, которую изучали довольно широко в силу легкости ее построения. Однако ученый облек в зримую форму и аттракторы с большим числом измерений. «Представьте сосиску, внутри которой заключена другая сосиска, а внутри нее еще одна, и еще, – говорил он. – Выньте ее, сверните, сожмите и положите обратно»[211]. Действительно, сгибание и сжатие пространства оказались ключом к построению странных аттракторов и, возможно, даже к динамике порождавших их реальных систем. Рёсслер чувствовал, что эти формы олицетворяли принцип самоорганизации окружающего мира. Его воображению рисовалось нечто вроде ветроуказателя на аэродроме. «Закрытый с одного конца рукав с отверстием на другом конце, куда рвется ветер, – так описывал это исследователь. – Вдруг ветер оказался в ловушке. Его энергия, вопреки желанию, совершает нечто продуктивное, подобно дьяволу в средневековой истории. Принцип таков: природа делает что-то против своей воли и, запутавшись сама в себе, рождает красоту».

Создание изображений странных аттракторов вряд ли можно назвать обычным делом. Запутанные пути орбит вьются сквозь три и более измерений, образуя в пространстве темный клубок с внутренней структурой, невидимой извне. Чтобы представить подобную трехмерную «паутину» в виде плоских картин, ученые сначала применяли технику проекции. Рисунок являл собой тень, отбрасываемую аттрактором на поверхность. Однако странные аттракторы довольно сложны, так что проекция смазывает все детали и взору предстает путаница, которую почти невозможно расшифровать. Более эффективная техника заключается в построении так называемого отображения первого возвращения, или отображения Пуанкаре. Суть ее сводится к отделению «ломтика» запутанной сердцевины аттрактора и перенесению его в двумерное пространство, подобно тому как патологоанатом помещает срез ткани на предметное стекло микроскопа.

Отображение Пуанкаре лишает аттрактор одного измерения и превращает непрерывную линию в совокупность точек. Сводя аттрактор к отображению Пуанкаре, ученый по умолчанию считает, что сохранит самую суть движения. Он может вообразить, к примеру, что странный аттрактор вьется у него перед глазами, словно пчела, и его орбиты перемещаются вверх и вниз, влево и вправо, ближе и дальше от экрана компьютера – и каждый раз, когда орбита аттрактора пересекает плоскость экрана, она оставляет светящуюся точку в месте пересечения. Такие точки либо образуют похожее на кляксу пятно произвольной формы, либо начинают вычерчивать некий контур на экране.



Структура аттрактора. Странный аттрактор, изображенный в верхнем ряду (сначала представлена одна орбита, затем десять и сто), иллюстрирует хаотичное поведение ротора – маятника, совершающего полный круг и регулярно приводимого в движение притоком энергии. Через некоторое время, когда на рисунке появится тысяча орбит (ниже), аттрактор превратится в запутанный клубок. Чтобы можно было исследовать его внутреннее строение, компьютер делает поперечный срез аттрактора – так называемое сечение Пуанкаре (рисунок в рамке). Этот прием уменьшает число измерений с трех до двух. Каждый раз, когда траектория пересекает плоскость, она оставляет на ней точку. Постепенно возникает весьма детализированный образ. Показанный здесь пример состоит более чем из восьми тысяч точек, каждая из которых соответствует целой орбите, окружающей аттрактор. Фактически «отбираются пробы» системы через равные промежутки времени. Одни данные утрачиваются, зато другие выявляются во всей своей выпуклости.


Описанный выше процесс соответствует «отбору образцов» состояния системы, который ведется не постоянно, а лишь время от времени. В какой момент брать пробу, то есть из какой области странного аттрактора вырезать ломтик, – дело исследователя. Временной интервал, в котором содержится наибольшее количество информации, должен соответствовать некоему физическому свойству динамической системы. Например, отображение Пуанкаре может отражать скорость отвеса маятника каждый раз, когда тот проходит низшую точку. Или экспериментатор волен выбрать определенный регулярный промежуток времени, «замораживая» последовательные состояния во вспышках воображаемого света, исходящего от стробоскопа. В любом случае в получаемых изображениях в конце концов проявится изящная фрактальная структура, о которой догадывался Эдвард Лоренц.

Наиболее доступный для понимания и самый простой странный аттрактор был построен человеком, весьма далеким от загадок турбулентности и гидродинамики, – астрономом Мишелем Эно из обсерватории Ниццы на южном побережье Франции[212]. Бесспорно, в каком-то отношении астрономия дала толчок изучению динамических систем. Планеты, двигающиеся с точностью часового механизма, обеспечили триумф Ньютона и вдохновили Лапласа. Однако небесная механика значительно отличалась от земной: земные системы, теряющие энергию на трение, являются диссипативными, чего нельзя сказать об астрономических системах, считающихся консервативными, или гамильтоновыми. На самом деле в масштабе, близком к бесконечно малому, даже в астрономических системах наблюдается нечто вроде торможения. Оно происходит, когда звезды излучают энергию, а приливное трение несколько истощает кинетическую энергию движущихся по орбитам небесных тел. Однако для удобства в вычислениях астрономы пренебрегают рассеиванием, а без него фазовое пространство не будет складываться и сжиматься так, чтобы образовалось бесконечное множество фрактальных слоев. Странный аттрактор возникнуть не может. А может ли возникнуть хаос?

Не один астроном сделал карьеру, обойдя стороной динамические системы, но не таков был Эно. Он родился в Париже в 1931 году, всего на несколько лет позже Лоренца, и тоже представлял собой тот тип ученого, которого неумолимо влечет к математике. Ему нравилось решать небольшие конкретные вопросы, которые могли быть привязаны к определенным физическим проблемам, – по его собственному выражению, «не то, что делают современные математики». Когда компьютеры стали доступны даже любителям, подобная машина модели Heathkitпоявилась и у Эно. Собрав ее собственноручно, ученый наслаждался компьютерными забавами. Кстати, задолго до описываемых событий он исследовал особенно сложную проблему из области динамики. Она касалась шаровых звездных скоплений, в которых число светил доходит до миллиона. Это древнейшие и, возможно, наиболее интересные объекты ночного неба. Плотность их вызывает изумление. Как такое огромное количество звезд сосуществует в ограниченном объеме пространства и эволюционирует во времени, астрономы пытались выяснить в течение всего XX века.

С точки зрения динамики, моделирование шарового звездного скопления представляет собой «задачу многих тел». Задача двух тел очень простая, Ньютон ее полностью решил: каждое из пары тел, например Земля и Луна, описывает идеальный эллипс вокруг общего центра тяжести системы. Но добавьте хотя бы еще один обладающий тяготением объект – и все изменится. Задача трех тел уже более чем трудна – как показал Пуанкаре, в большинстве случаев она неразрешима. Можно просчитать орбиты для некоторого временно́го интервала, а с помощью мощных вычислительных машин их удается отследить и в течение более длительного периода, но потом возникают помехи. Эти уравнения не решаются аналитически, то есть долгосрочный прогноз поведения системы из трех тел сделать невозможно. Устойчива ли Солнечная система?[213]