Хаос. Создание новой науки — страница 64 из 70

ез деревянную стену. Это явление, при котором один регулярный цикл синхронизируется с другим, ныне называют захватом фазы. Именно в силу этого явления Луна всегда обращена к Земле одной и той же стороной и в целом у спутников планет, как правило, отношение периода вращения вокруг своей оси к периоду обращения по орбите составляет 1 κ 1, или 2 к 1, или 3 к Когда отношение близко к целому числу, нелинейность в приливном притяжении спутника тяготеет к тому, чтобы осуществить захват фазы. Этот эффект встречается и в электронике, позволяя радиоприемнику настраиваться на определенные сигналы, даже если наблюдаются небольшие колебания частоты. Воздействие регулярных циклов друг на друга объясняет способность групп осцилляторов, в том числе биологических, таких как клетки сердечной ткани и нервные клетки, функционировать синхронно. Удивительный пример из мира природы представляют светлячки, встречающиеся в Юго-Восточной Азии: в брачный период они собираются на деревьях тысячами и мерцают в удивительно гармоничном ритме.



Хаотическая гармония. Взаимодействие различных ритмов, таких как радиочастоты или планетарные орбиты, производит особую версию хаоса. На рисунках представлены компьютерные изображения некоторых «аттракторов», которые могут возникнуть при наложении друг на друга трех ритмов.


Для всех явлений регуляции важным свойством является устойчивость – способность системы противостоять малым возмущениям. Для биологических объектов не менее важна гибкость, то есть способность системы нормально функционировать в целом диапазоне частот. Синхронизация с одной-един-ственной частотой может воспрепятствовать адаптации системы к изменениям, так как живые организмы должны гибко реагировать на быстро меняющиеся и непредсказуемые обстоятельства. Ни один сердечный или дыхательный ритм не может быть сведен к точным периодичностям простейших физических моделей, причем это касается и более трудноуловимых ритмов остальных систем организма. Некоторые исследователи, в том числе Эри Голдбергер из Гарвардской медицинской школы, предположили, что здоровая динамика жизненных процессов задается физическими фрактальными структурами, такими как разветвляющиеся сети бронхов в легких и проводящих волокон в сердце, которые обеспечивают широкий диапазон ритмов. Размышляя об аргументах Роберта Шоу, Голдбергер заметил: «Фрактальные процессы, ассоциируемые с масштабируемыми широкими спектрами частот, „информационно насыщенны“. Напротив, периодические состояния отражают узкий спектр частот и определяются монотонными, повторяющимися последовательностями, лишенными всякой информативности»[385]. Лечение подобных расстройств, как предположили Голдбергер и другие физиологи, может зависеть от расширения спектрального резерва системы, ее способности функционировать при множестве различных частот, не замыкаясь на одной из них.



Хаотические потоки. Стержень, протянутый сквозь вязкую жидкость, формирует простую волнистую форму. Но если протянуть его несколько раз, то возникают более сложные формы.


Арнольд Мэнделл, психиатр из Сан-Диего и специалист по динамике, вставший на защиту Губермана и его гипотезы о движении глаз у больных шизофренией, пошел еще дальше по пути изучения роли хаоса в физиологии. «Возможно ли, чтобы математическая патология, то есть хаос, было здоровьем? А то, что математика считает нормой, – предсказуемость и дифференцируемость – являлось болезнью?»[386] Мэнделл занялся изучением хаоса еще в 1977 году, когда обнаружил «необычное поведение» определенных ферментов в мозгу, которое удавалось объяснить, лишь используя новые методы нелинейной математики. При его поддержке были проведены аналогичные исследования колеблющихся трехмерных зацеплений между молекулами белка. Он заявлял, что подобные молекулы биологам следует рассматривать не как статические, а как динамические системы, способные к фазовым переходам. Рьяный приверженец новой дисциплины (по собственному его признанию), Мэнделл интересовался главным образом самым хаотичным из органов – мозгом. «Достижение равновесия в биологии означает смерть, – повторял он. – Если вы спросите меня, является ли мозг равновесной системой, мне будет достаточно попросить вас не думать несколько минут о слонах – и вы тут же убедитесь, что мозг отнюдь не равновесная система»[387].

По мнению Мэнделла, открытия в области хаоса сулили перемены в клинических подходах к лечению психических расстройств. Если судить объективно, современная «психофармакология» – врачевание пилюлями всего и вся, от тревожного расстройства и бессонницы до шизофрении, – должна быть признана провалом. Если и есть излечившиеся, то их совсем мало. Можно снять наиболее острые проявления душевной болезни, но каким будет долгосрочный эффект от лечения, никто не знает. Мэнделл указывал коллегам на отрицательное побочное действие целого ряда наиболее часто назначаемых препаратов[388]. Производные фенотиазина, прописываемые больным шизофренией, лишь ухудшают общую клиническую картину; трициклические антидепрессанты «увеличивают частоту смены настроения, приводя к долгосрочному росту числа рецидивов психопатологических проявлений», и так далее. Как заявил Мэнделл, только применение лития – и то лишь в определенных случаях – дает неплохой эффект.

Мэнделл считал рассматриваемую проблему концептуальной. Традиционные методы лечения этого «самого нестабильного динамического механизма с бесконечной размерностью» были линейными и редукционистскими. «Основная парадигма такова: ген → пептид → фермент → нейротрансмиттер → рецептор → поведение животного → клинический синдром → лекарственный препарат → клиническая оценка его эффективности. И такой подход определяет почти всю исследовательскую работу и лечение в рамках психофармакологии. Более пятидесяти нейротрансмиттеров, тысячи типов клеток, сложная электромагнитная природа и сплошная нестабильность порождают автономную активность на всех уровнях, начиная от белков и заканчивая электроэнцефалограммой, – а мозг все еще считается простым химическим коммутатором, соединяющим одну точку с другой!»[389] Знакомые с нелинейной динамикой не могли воспринимать это иначе как наивность. Мэнделл убеждал коллег вникнуть в подвижную геометрию, присущую таким сложнейшим системам, как мозг.

Многие другие ученые начали применять математический формализм хаоса к изучению проблемы искусственного интеллекта. В частности, динамика систем, блуждающих между «бассейнами притяжения», привлекла тех, кто искал способ моделирования символов и воспоминаний[390]. Физик, представлявший идеи как некие зоны с расплывчатыми границами, обособленные, но отчасти совпадающие, притягивающие, словно магниты, но не препятствующие движению, естественно, обращался к понятию фазового пространства с «бассейнами притяжения». Подобные модели обладали подходящими элементами: точками стабильности среди зон неустойчивости, а также областями с изменчивыми границами[391]. Их фрактальная структура предполагала как раз ту особенность бесконечного возврата к самой себе, которая лежит в основе способности разума генерировать идеи, решения, эмоции и иные проявления сознательной деятельности. Что бы ни думали о хаосе специалисты, исследующие процесс познания, они не могли больше моделировать разум как статическую структуру. Двигаясь от нейронов по восходящей, они выявили целую иерархию уровней, которая обеспечивает взаимодействие микро– и макромасштабов, столь характерное для турбулентности в жидкостях и для других сложных динамических процессов.

Структура, зарождающаяся среди бесформенности, – такова главная прелесть живого и его основная загадка. Жизнь извлекает порядок из моря неустойчивости. Эрвин Шрёдингер, один из создателей квантовой механики и представитель тех немногих физиков, которые размышляли над вопросами биологии, объяснил это тем, что живому организму присущ «удивительный дар концентрировать в себе некую „струю порядка“ и таким образом избегать распада на хаос атомов»[392]. Будучи физиком, Шрёдингер отчетливо понимал, что структура живой материи отличается от тех форм материи, которыми занималась его наука. Основным «кирпичиком» в здании живого организма ему представлялся апериодический кристалл (понятия ДНК тогда еще не существовало). «В физике до настоящего момента мы имели дело лишь с периодическими кристаллами. Эти крайне интересные и сложные объекты составляют одну из наиболее чарующих и сложных материальных структур, с помощью которых неживая природа ставит ученого в тупик, и все же по сравнению с апериодическими кристаллами они довольно просты и скучны»[393]. Различия, о которых пишет Шрёдингер, можно сравнить с разницей между обоями и гобеленом, между регулярным повторением определенного узора и богатейшими вариациями творения художника. Физиков учили понимать лишь рисунок обоев, поэтому неудивительно, что их вклад в биологию оказался столь невелик.

Точка зрения Шрёдингера была необычной. Мысль, что жизнь одновременно и упорядоченна, и сложна, выглядела трюизмом. Представление об апериодичности как источнике особых свойств живого граничило с мистикой. Во времена Шрёдингера ни математики, ни физики по-настоящему не поддержали его идею. Для анализа иррегулярности как основного компонента жизни еще не существовало инструментов. Но сейчас они есть.

Глава 11ХаосЧто лежит за ним?

Никак не менее чем классификация составляющих хаоса обозревается здесь.

Герман Мелвилл. «Моби Дик»