(внизу справа). Когда Файгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять на языке итераций: функции функций, функции функций от функций и т. д.; схемы с двумя «горбами», потом с четырьмя…
Файгенбаум быстро выяснил, что компьютеры Лос-Аламоса мало подходят для вычислений, которые он задумал. Несмотря на огромные ресурсы лаборатории, гораздо более обширные, нежели в большинстве университетов, лишь несколько терминалов могли воспроизводить графики и изображения, да и те находились в отделе вооружения. Файгенбаум намеревался наносить определенные числа в виде точек на своеобразную карту и вынужден был прибегнуть к наиболее простому из возможных методов: он использовал длинные рулоны распечаток, где просматривались линии, составленные из чередующихся пробелов, звездочек и знаков сложения. Официальная политика лаборатории заключалась в том, что один большой компьютер лучше нескольких менее мощных. Это было следствие курса «одна проблема — одно решение». Маломощные машины отбивали всякую охоту к исследованиям; к тому же, приобретая компьютер, каждый отдел должен был следовать обязательным указаниям сверху и давать в этом отчет. Лишь гораздо позже, благодаря финансовой помощи теоретического отдела, Файгенбаум получил в личное пользование вычислительную машину стоимостью 20 000 долларов. Теперь он мог видоизменять свои уравнения и мелькавшие на экране картины, перестраивать их, играя на компьютере, словно на музыкальном инструменте. Но это было позже, а пока единственные терминалы, за которыми удавалось всерьез работать с графикой, находились в строго охраняемых зонах, как говорили в лаборатории — за забором. Файгенбауму приходилось использовать терминал, соединенный телефонными кабелями с центральным компьютером. Имея дело с таким устройством, оценить истинную мощность машины на другом конце кабеля весьма сложно, — даже решение простейших задач занимало целые минуты. Чтобы отредактировать лишь одну строчку программы, приходилось, нажав клавишу «Возврат», ждать под непрерывный гул терминала, пока центральный компьютер не обслужит других пользователей.
Вычисляя, Файгенбаум непрерывно размышлял. Какая еще неизвестная математика могла породить наблюдаемые им множественные масштабные модели? Он понял: нечто в этих функциях должно быть повторяющимся, самовоспроизводящимся. Поведением исследуемой системы руководило поведение другой, скрытой внутри нее. Волнистый контур, открывшийся ученому в миг озарения, кое-что прояснял в том, как масштаб одной функции мог быть подогнан в соответствие с другой функцией. Файгенбаум применил теорию групп перенормировки, прибегнув к масштабированию, чтобы избавиться от бесконечности и получить количественные оценки. Весной 1976 г. его жизнь обрела безумный ритм, какого он не знал прежде. Погрузившись в некий транс, Файгенбаум с каким-то неистовством писал программы, что-то черкал карандашом на бумаге и вновь программировал. Он даже не обращался за помощью в компьютерный отдел: это было бы равносильно отказу от собственного компьютера и замене его телефоном, а перестройка метода работы казалась весьма рискованной. Митчелл не прерывался более чем на пять минут, иначе компьютер автоматически отключил бы его линию. Все же временами машина подводила ученого, повергая его в состояние, близкое к шоку. Так, без перерыва, он работал больше двух месяцев. Его рабочий день длился двадцать два часа. Когда он ложился спать, напряжение не покидало его, поднимая ровно через сто двадцать минут и заставляя думать с того же места, где он остановился. Силы его поддерживал лишь кофе. (Даже в лучшие времена Файгенбаум существовал исключительно на полусырых бифштексах, кофе и красном вине. Друзья подшучивали, что он получает витамины из сигарет.)
Конец этому положил врач, прописав ученому успокоительное в скромных дозах и усиленный отдых. Но к тому времени Файгенбаум уже создал универсальную теорию.
Универсальность стирала грань между прекрасным и полезным. Математиков, которые перешли определенную черту, мало волнует пригодность их теорий для вычислений, физики же, миновав некую точку, нуждаются в числах. Всеобщность вселяла надежду на то, что, решив легкую задачу, физики смогут ответить на гораздо более сложные вопросы, поскольку решения будут идентичными. Встроив свое открытие в рамки групп перенормировки, Файгенбаум придал теории такой облик, что физики могли признать ее в качестве почти стандартного инструмента вычислений.
Но то полезное, что присутствовало в новой теории, одновременно делало ее и весьма сомнительной для физиков. Всеобщность означала, что различные системы ведут себя одинаково. Безусловно, Файгенбаум лишь изучал простые функции. Впрочем, он держался того мнения, что его теория отражает естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к турбулентному. Все знали, что турбулентность представляет собой непрерывный спектр различных частот, но откуда они появлялись, оставалось загадкой. И вдруг удалось увидеть их последовательно появляющимися друг за другом! Физический подтекст заключался в том, что системы реального мира вели себя точно так же и их поведение можно было измерить. Универсальность Файгенбаума являлась не только качественной, но и количественной характеристикой, не только структурной, но и метрической.
Прошли годы, а Файгенбаум все еще хранил в ящике стола письма с вежливыми отказами в публикации статей. Тогда он уже в полной мере достиг славы и признания; работа, написанная в Лос-Аламосе, принесла ему награды и премии, которые, в свою очередь, означали престиж и немалые деньги. Но ученый все еще терзался тем, что редакторы главных научных журналов в течение двух долгих лет отказывают ему в публикации. Трудно поверить, что причиной отказа послужила невероятная оригинальность открытия. Современная наука с ее огромными потоками информации и беспристрастной манерой вдумчивого суждения не допускает предпочтений. И тем не менее… Один из издателей, вернувших Файгенбауму его рукопись, позже признался, что в самом деле отверг работу, ставшую поворотным пунктом в развитии науки. При этом он продолжал настаивать, что статья не очень отвечала профилю издания, каковым являлась прикладная математика. Между тем, несмотря на отсутствие публикаций, открытие Файгенбаума вызвало широкий резонанс в кругах математиков и физиков. Важнейшие пункты его теории стали известны из лекций и препринтов, как это часто и случается в современном научном мире. Файгенбаум рассказывал о своих исследованиях на конференциях, а просьбы предоставить копии статей, приходившие сначала десятками, позже буквально потекли рекой.
Сегодняшняя экономика в значительной степени зависит от эффективности теорий рынка. Предполагается, что знания циркулируют довольно свободно. По общему мнению, принимающие важные решения люди имеют доступ примерно к одной и той же совокупности данных. Бесспорно, не обходится без некоторых пробелов в знаниях или использования неких скрытых сведений. Так или иначе, ученые считают единожды обнародованную информацию известной везде. У историков науки на сей счет есть собственная концепция: каждое новое открытие, каждая новая идея сразу же причисляется к общему достоянию научного мира. Любой прорыв, озарение основаны на прошлом знании. Наука растет, словно дом, кирпичик за кирпичиком. Для целей практики можно считать, что научный прогресс движется поступательно и линейно.
Подобный взгляд на науку верен, когда все ожидают решения четко обозначенной проблемы в совершенно определенной области. В частности, открытие молекулярной структуры ДНК было правильно принято всеми. Но история распространения новых идей далеко не всегда столь безоблачна. Когда в недрах различных дисциплин возникли странные гипотезы о нелинейности, поток мысли уже проложил себе русла, не предусмотренные стандартной логикой историков. История науки о хаосе не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Многие детали головоломки, замеченные еще Пуанкаре, Максвеллом, Эйнштейном, были отброшены и забыты. Новые элементы оказались доступны пониманию немногих. Относящееся к математике восприняли представители этой науки, физики извлекли что-то свое, а новое в метеорологии не заметил вообще никто. Укоренение новых идей в умах протекало так же нелегко, как и появление их на свет.
Каждый ученый — метеор, рожденный особым созвездием своих интеллектуальных предшественников. Каждый странствует в своем мире идей, и эти миры так или иначе ограничены. Знания несовершенны. Ученые подвержены влиянию традиций тех наук, которым они служат, или образования. Научный мир может быть удивительно консервативным. Историю в новое русло направляет отнюдь не собрание ученых мужей, а горсточка индивидов — носителей особого восприятия, особых целей.
Впоследствии оформился общий взгляд на то, чьи новации, чья роль важнее всего. Однако тут не обошлось без ревизионизма. В самый разгар становления новой науки, особенно в конце 70-х годов, вы не сыскали бы двух физиков или двух математиков, одинаково воспринимавших феномен хаоса. Тот, кто привык к классическим системам без трения или диссипации, принимал сторону русских ученых А. Н. Колмогорова и В. И. Арнольда. Специалисты, изучающие классические динамические системы, числили своими соратниками Пуанкаре и Биркхофа, Левинсона и Смэйла. Позже основная масса математиков отдала предпочтение Смэйлу, Гукенхаймеру и Руэллю, а также плеяде исследователей из Лос-Аламоса: Уламу, Метрополису, Стейну. Физик-теоретик выше всего ставил Руэлля, Лоренца, Ресслера и Йорка, биолог — Смэйла, Гукенхаймера, Мэя и Йорка. Число подобных комбинаций бесконечно; например, геолог или сейсмолог признавал прямое влияние идей Мандельбро, а физик-теоретик и имени-то такого, возможно, не слышал.
Роль Файгенбаума стала предметом ожесточенных споров. Много позже, когда слава его