Хаос. Создание новой науки — страница 41 из 62

В науке, как правило, превалируют физические причины. Действительно, когда астрономия и физика вышли на свет из тени религии, аргументы телеологии были выброшены за ненадобностью, — Земля такова, какова она есть, и человечество может делать то, что делает. Однако в рамках биологии Дарвин твердо установил, что телеологии принадлежит главная роль при рассмотрении причины. Биологическая вселенная, может, и не создана по замыслу Творца, но облик ее формируется естественным отбором, который действует не на уровне генов или эмбрионов, а на уровне «конечного продукта» — живых существ. Таким образом, объяснение формы организма или функции отдельного органа потребностями адаптации всегда заостряет внимание на причине — именно конечной, а не физической. Везде, где торжествует дарвиновское мышление, понятие «конечной причины» остается в науке. Современный антрополог, размышляя о каннибализме или ритуальных жертвоприношениях, всегда — правильно или нет — задается вопросом об их цели. Д'Арси Томпсон, знакомый с таким подходом, настоятельно просил биологов помнить также и о физической причине, рассматривая механизм и телеологию в единстве. Он изучал математическую и физическую природу сил, которые созидают жизнь. Однако адаптационная теория не сдавала позиций, и подобные идеи казались неуместными. Изучение того, как древесный лист в ходе естественного отбора сделался эффективным приемником солнечной энергии, превратилось в разностороннюю и весьма плодородную проблему. Лишь намного позже некоторые ученые начали задумываться над тем, что осталось неразгаданным: формы листьев не так уж многообразны, и очертания листа отнюдь не предопределены его назначением.

Математика, доступная Д'Арси Томпсону, не позволяла доказать то, что хотелось бы. Самое большее, что он мог, это рисовать. Ученый изображал, в частности, черепа родственных видов животных в сетке координат, демонстрируя таким образом, что элементарное геометрическое преобразование превращает один объект в другой. Очертания простых организмов, столь обманчиво схожих со струями жидкости, брызгами и другими порождениями водного потока, он объяснял физическими причинами — действием гравитации и поверхностного натяжения, которые, однако, не могли проделать приписываемую им созидательную работу. Почему же тогда Альберт Либхабер думал о работах Томпсона, начиная свои опыты с жидкостью?

Представления Д'Арси Томпсона о тех силах, которые придают форму живым объектам, ближе всего подводили к рассмотрению динамических систем. Он представлял жизнь такой, какая она есть, всегда в движении, постоянно реагирующей на ритмы — «скрытые в глубине ритмы роста», которые порождают, по его мнению, всеобщие формы. Ученый считал, что исследует не материальные формы вещей, а их динамику — «интерпретацию изменения энергии на языке силы». Однако он достаточно ориентировался в математике, чтобы понять: выстраивающиеся в один ряд формы ничего не доказывают. В некоторой степени Томпсон был поэтом, ибо только поэт мог поверить, что ни случайность, ни цель не объясняют поразительную универсальность форм, выявленных им за долгие годы наблюдения природы. Объяснение скрывалось в физических законах, которые регулируют силы и рост непостижимым для человеческого разума образом. Снова Платон! За конкретными видимыми формами вещества должны лежать некие призрачные очертания, невидимые лекала. Формы всегда в движении.


Либхабер выбрал для своего эксперимента жидкий гелий, имевший чрезвычайно малую вязкость, благодаря чему вращение жидкости начиналось даже при малейшем толчке. Аналогичный опыт с жидкостью средней вязкости, вроде воды или жидкого воздуха, требовал гораздо большей емкости. Низкая вязкость позволяла ученому сделать свою конструкцию более чувствительной к нагреванию. Для инициирования конвекции в ячейке, размеры которой измерялись миллиметрами, между температурами верхней и нижней поверхностей требовалась разница в тысячную долю градуса. Именно поэтому экспериментатор сделал ячейку столь крошечной; в объеме покрупней, где жидкий гелий мог бы вращаться в большем пространстве, аналогичные движения жидкости потребовали бы меньшего нагрева. Так, в коробке размером с крупную виноградину конвекция началась бы уже при разнице температур в одну миллионную долю градуса. Подобными мельчайшими температурными вариациями нельзя было управлять.

Обдумывая опыт, Либхабер и его помощник стремились исключить любое проявление беспорядочности. Они сделали все что могли, дабы предупредить то самое движение, которое собирались изучать. Перемещение жидкости, начиная от плавного ее течения и заканчивая турбулентностью, представлялось как движение в пространстве. Его сложность — это сложность пространственная, его волнения и водовороты — пространственный хаос. Но Либхабер искал такие ритмы, которые проявили бы себя как изменения во времени. Время являлось и полем для опыта, и мерилом. Либхабер как бы «сплющил» пространство почти до одномерной точки и довел до крайнего предела технику, использованную его предшественниками в экспериментах с жидкостью. Каждый знал, что течение жидкости в замкнутом объеме — конвекция Рэлея — Бенарда в прямоугольной емкости или вращение Куэте — Тэйлора в цилиндре — гораздо проще поведения ничем не стесненного потока, например океанских волн или воздушных течений. В открытом потоке пограничная поверхность остается свободной, во много раз увеличивая сложность поведения системы.

Поскольку конвекция в узком сосуде порождает валики жидкости, похожие на ленты — или, в данном случае, на крохотные семена кунжута, — Либхабер сконструировал свою ячейку так, чтобы хватило места для двух завитков. Жидкий гелий должен был подняться в центре, затем, образовав левый и правый валики, спуститься вниз по внешним стенкам ячейки. Предполагалось, что, поскольку процесс пойдет в рамках замкнутого пространства, колебания будут ограниченными. Четкие линии и взвешенные пропорции обещали устранить любые помехи. Словом, Либхабер «заморозил» пространство так, чтобы можно было играть со временем.

Для наблюдений за тем, как жидкий гелий начнет вращаться внутри ячейки, помещенной в вакуумный контейнер внутри емкости с азотом, экспериментатор встроил два микроскопических температурных датчика в верхнюю сапфировую пластину, покрывавшую ячейку. Графопостроитель непрерывно фиксировал их показания. Таким образом ученый контролировал температуру в двух точках на верхней поверхности жидкости. Это было на редкость чувствительное и умное устройство. Либхабер обманул природу, как заметил один из физиков.

Эксперименты с миниатюрным сверхточным шедевром заняли два года, но, по признанию изобретателя, для его полотна то была самая подходящая кисть, достаточно удобная и не громоздкая. Он увидел всё. Проводя свой опыт днем и ночью, час за часом, Либхабер обнаружил на пороге турбулентности более запутанное поведение, чем мог себе представить. Появился полный каскад удвоений периодов. Было установлено, что этот процесс начинается с первого разветвления. Движение происходит сразу же, как только нижняя пластина из чистой меди нагревается достаточно, чтобы вывести жидкость из состояния покоя. При температуре в несколько градусов выше абсолютного нуля для этого требовалась лишь одна тысячная доля градуса. Жидкость на дне ячейки, нагреваясь, расширяется и становится легче прохладной жидкости на поверхности. Чтобы дать теплым нижним слоям вещества подняться, верхние, более холодные, должны «утонуть» — опуститься вниз. В процессе такого перемещения в жидкости образуется два вертящихся «цилиндра». Как только скорость вращения стабилизируется, в системе устанавливается динамическое равновесие. Тепловая энергия постоянно переходит в энергию движения, а затем, через трение, обратно в теплоту, которая рассеивается через прохладную верхнюю пластину.

До сих пор Либхабер воспроизводил широко известный в гидродинамике опыт, если не сказать тривиальный. «Это была классическая физика, — замечал ученый, — что, к несчастью, означало: старо, а значит, неинтересно». Он рассматривал точно такой же поток, какой смоделировал Лоренц на базе системы из трех уравнений, но опыт проводился в реальном мире и с реальной жидкостью, в лаборатории, куда с забытых транспортом улиц Парижа проникают вибрации. Одно это делало сбор данных проблемой куда более сложной, чем воспроизведение чисел с помощью компьютера.

Либхабер, как и другие экспериментаторы, использовал для записи показаний датчиков простой графопостроитель. В состоянии равновесия, после первого разветвления, температура в любой точке оставалась более или менее постоянной, и перо чертило прямую линию. С увеличением нагрева обнаруживалась большая нестабильность. В каждом витке появлялся узел, который равномерно двигался взад и вперед, и такое его перемещение выявляло колебания температуры между двумя значениями, верхним и нижним. В этот период перо графопостроителя чертило на бумаге волнистую линию.

По одной непрерывно меняющейся и дрожащей от помех линии температур выяснить точное время появления новых разветвлений или установить их природу невозможно. График образует «пики» и «долины», которые кажутся столь же случайными, как и кривые продаж переживающего лихорадку фондового рынка. Либхабер проанализировал полученные данные, построив на их основе спектральные диаграммы. Он намеревался выявить главные частоты, скрытые в меняющихся значениях температуры. Создание диаграммы экспериментальных данных похоже на построение графика звуковых частот, составляющих сложные аккорды симфонии: внизу графика всегда проходит зубчатая линия — фон, экспериментальные шумы. Главные тона проявляются как вертикальные пики. Чем громче тон, тем выше амплитуда пика. Если данные воспроизводят доминантную частоту, например с периодом в одну секунду, эта частота будет выглядеть на спектральной диаграмме как повторяющийся пик.


Рис. 7.2. Два способа наблюдения разветвлений. Когда в опыте, подобном тому, который поставил Либхабер, наблюдаются устойчивые колебания, их образ в фазовом пространстве представляет собой петлю, повторяющую саму себя с регулярными интервалами