Следовательно, как при горении, так и при дыхании выделяются одни и те же продукты: вода и угольный ангидрид.
Если бы мы в первом опыте, с которого начались наши беседы, вместо магния взяли ядовитый фосфор, то опыт показал бы нам, что только пятая часть воздуха, — кислород, в нем растворенный, — поддерживает горение. Если бы мы имели жестокость поместить под стеклянный колокол, погруженный краями в воду, какую-нибудь живую тварь, она бы задохнулась раньше, чем вода поднялась бы в колоколе. Почему же?
Химический парадокс: являясь сильным ядом в чистом виде, фосфор в его соединениях — необходимая составная часть нашей пищи. Выделив из человеческого организма весь находящийся в нем фосфор в виде желтого фосфора, можно отравить им смертельно 250,000 человек.
Потому что фосфор, жадно соединяющийся с кислородом, перестанет гореть только тогда, когда сожжет весь кислород (то есть израсходует его на сожжение), а живое существо умрет уже при недостатке последнего.
Должен оговориться: не всякое живое существо. Есть бактерии, дышащие серой; есть живые существа, для которых кислород — яд.
Кислород был впервые получен в чистом виде знаменитым английским ученым Пристлеем в 1774 году.
Имя Пристлея надо присоединить к списку тех многих ученых, которых преследовали попы и контрреволюционеры. Он не скрывал ни своих свободных взглядов на догматы церковников, ни революционных симпатий. И вот, когда он с друзьями праздновал годовщину взятия Бастилии, натравленные попами черносотенцы напали на его дом, разгромили лабораторию, сожгли его рукописи. Спасая свою жизнь, Пристлей бежал, а впоследствии эмигрировал в Америку.
Такое преследование научной мысли происходит и в наше «просвещенное время». На наших глазах в фашистской Германии идет озверелое гонение на ученых, и сжигаются, как в средние века, на площадях труды гениальных мыслителей.
Сотни ученых вынуждены были бежать из Германии, в том числе и Габер, открывший способ использования азота воздуха для синтеза аммиака и оказавший этим колоссальные услуги Германии во время мировой войны.
Реакции экзо- и эндотермические
При взрыве водорода с кислородом образуется вода и освобождается энергия. Чтобы разложить воду на водород и кислород, надо, наоборот, затратить энергию. Реакции, сопровождающиеся выделением энергии, называются экзотермическими, реакции, требующие притока энергии извне, называются эндотермическими.
Если вещества соединяются с выделением энергии, то на разложение на них полученного соединения надо затратить такое же количество энергии, какое выделилось, когда они соединялись. И, обратно, если вещества соединяются, поглощая энергию, то при разложении они столько же ее выделяют.
Отсюда важный практический вывод: многие реакции в общежитии и технике проделываются не для получения новых видов веществ, а для использования энергии, выделяющейся при реакциях.
Печи топят, сжигая горючее, не для того, чтобы превратить входящий в его состав углерод в угольный ангидрид, а водород в пары воды, а для того, чтобы использовать тепло, возникающее вследствие этих реакций.
В гальванических элементах цинк растворяют в кислоте не для получения цинковой соли, а для использования возникающего при этой реакции электрического тока. Химические процессы в технике используют, значит, не только для производства тех или иных веществ, но и для получения света (зажигание спички, горение свечи и керосиновой лампы), тепла (сожжение топлива в печах), механической энергии (взрывы смеси газов в двигателях внутреннего горения), электричества (в гальванических элементах и аккумуляторах) и т. д.
Газ, в котором горит железо
Если бы воздух не содержал азота, а целиком состоял из кислорода, жизнь организмов развилась бы, конечно, приспособившись к дыханию чистым кислородом. Одним был бы опасен такой состав атмосферы: горючестью в ней большинства окружающих нас предметов.
Страшны и сейчас пожары в деревнях и городах с преобладанием деревянных строений, но во много раз больше была бы опасность, если бы воздух не состоял на 4/5 из азота, не поддерживающего горения. В нем тогда горели бы не только уголь и дерево, но и большинство металлов. Сгорели бы легко не одни деревянные избы и дома, но и железные мосты, и рельсы, и гигантские морские суда.
Чтобы показать примеры горючести в чистом кислороде веществ, не горящих или только тлеющих в воздухе, добудем немного этого газа.
Есть много способов выделить его в чистом виде. В технике он получается сгущением воздуха сильным давлением до 200 атмосфер и охлаждением (до –180°). При испарении такого жидкого воздуха из него раньше всего выкипает азот. Оставшийся кислород представляет собою сильно магнитную жидкость красивого синего цвета. Применяется он для автогенной сварки и резки металлов: сжигая в особых горелках водород в струе чистого кислорода, получают длинное и острое пламя, имеющее температуру в 2000°. Стальное изделие пронизывается им насквозь раньше, чем вся масса металла успеет заметно нагреться; толстые листы котельного железа режутся, как масло ножом.
Получают кислород и иначе. Так, окись бария при нагревании присоединяет к себе кислород, обращаясь в перекись бария, а эта последняя при более сильном накаливании вновь его выделяет. В последние годы кислород из воздуха получают подобным способом, только вместо окиси бария пользуются другим, более сложным по составу веществом.
В учебниках химии обычно указывают на получение кислорода разложением окиси ртути или смеси хлорноватокалиевой соли (бертолетовой) и перекиси марганца (пиролюзита). Первый способ пригоден для получения очень незначительных количеств газа, второй не безопасен, и оба требуют сильного нагревания.
Лучше всего иллюстрировать опасность бертолетовой соли, этого невинного лекарства для полоскания горла, такой картинкой:
«Случай выделения наибольшего количества кислорода, какое только нам известно, произошел 12 мая 1899 г. на химическом заводе в Сент-Геленсе благодаря тому, что бертолетовая соль случайно слишком нагрелась. Около 150 тонн приготовленной соли, упакованной в бочках, находились на складе в ожидании отправки. Каким-то образом искра от бочки, которую вкатывали в помещение, где кристаллизуется соль, попала в деревянную раму кристаллизационного чана. Дерево это, будучи пропитано бертолетовой солью, было в высокой степени способно к воспламенению. И действительно, вспыхнул страшный огонь, который поднялся вверх, и через несколько минут крыша здания была охвачена пламенем. Тут произошла страшная сцена: невероятный жар, накаляя ряд за рядом тесно сложенные бочки с бертолетовой солью, вызвал выделение огромного количества чистого кислородного газа, который расходился во все стороны. Все деревянные постройки, погруженные таким образом в атмосферу чистого кислорода, горели со страшной силой, так что вскоре все здание раскалилось добела, горя с ослепительным блеском, как в плавильной печи. Наконец, когда кислород не мог уже более достаточно быстро выделяться из бочонков, соль взорвалась.
И что за взрыв!.. Два громадных удара, быстро последовавших один за другим, возвестили городу о случившемся несчастии, а клубы черного дыма, поднявшиеся в виде гигантского столба, указывали место взрыва. Весь завод разлетелся вдребезги. Здания и склады сравнялись с землей. Большие передвижные подъемные краны сгорели, как спички. Вершина соседнего газгольдера была разорвана в куски, и около 1/4 миллиона куб. футов пылающего газа взлетело в воздух. Летящие и горящие головни распространяли пожар, который представлял поразительное зрелище огромного столба пламени, со страшным ревом поднимающегося на 500–600 футов в высоту. Удар был столь страшный, что земля заколебалась, как при землетрясении. Дома были снесены, как ветром; на целые мили все стекла были разбиты вдребезги гигантской воздушной волной, тогда как весь город был объят паникой. Пассажиры поезда, который только что подошел к станции, подверглись страшному испытанию: хотя станция находилась далеко от места взрыва, вагоны подпрыгнули на месте, и все стекла были разбиты как будто кем-то нарочно и сразу.
Вероятно, около полутора миллионов куб. футов кислородного газа таким образом сразу вылилось в воздух. Эта катастрофа была простым повторением, только в огромных размерах, одного из приключений, которые происходят со всяким, начинающим практически изучать химию, именно при приготовлении кислорода нагреванием бертолетовой соли».
Не правда ли, лучше кислород добывать как-нибудь иначе, безопаснее? Да!
И я советую получить его действием марганцево-кислого калия на перекись водорода.
Добывание кислорода
То и другое легко достать в любой аптеке. Крепкий раствор перекиси водорода влейте в колбу с воронкой или двугорлую склянку, всыпьте туда же марганцево-кислого калия и собирайте выделяющийся кислород в цилиндры или бутылки, наполненные водой и опрокинутые отверстием вниз, в пневматическую ванну, — словом, так, как собирали водород. Только, вынимая из ванны сосуды с газом, ставьте их отверстием вверх, прикрывая матовой стеклянной пластинкой, потому что кислород немного тяжелее воздуха.
Горящее железо
Обернув вокруг карандаша тонкую отожженную железную проволоку, насаживают на ее конец кусочек пробки, зажигают последнюю и опускают проволоку в сосуд с кислородом. Можно прямо вколоть свободный конец проволоки в мягкую пробку и закрыть ею склянку с газом. На дне склянки надо оставить немного воды, то есть, собирая в нее выделяющийся кислород, не вытеснять им из сосуда всю воду. В этом случае окалина (продукты горения железа), получающаяся при сгорании железа, остывает в воде, а иначе дно склянки может лопнуть.
Наберите кислорода в бутыль из темно-зеленого стекла и зажгите в нем ленточку магния (через белое стекло свет будет так ярок, что может повредить глазам).
Горение железа в кислороде