В этот весенний день Пер и Эсбьёрн трудились в сарае трактирщика Йонса Йонсона в Эльмхульте – маленькой деревне, в которой позже возникнет компания IKEA. Обычно землю вскапывали на глубину примерно 30 см, а затем на некоторое время ссыпали в большие чаны с водой, чтобы дать нитрату калия раствориться. Когда грязь оседала, чистый водный раствор можно было переместить в большие медные котлы объемом около 800 литров каждый. Затем Пер и Эсбьёрн приказывали принести дрова, воду в котлах нагревали до кипения и оставляли кипеть на медленном огне примерно неделю – или «пока яйцо не станет держаться на поверхности». После этого в горячий раствор добавляли золу, и в результате на дне получалось то, что химики называют выпавшим осадком. Выражаясь более грубо, в котлах образовывались плотные куски, которые оседали на дне. Один из моих источников говорит, что работникам следовало подождать, пока температура опустится до 25 °C. Однако какая-либо температурная шкала, не говоря уж о термометре, была зелейщикам недоступна. Им оставалось лишь полагаться на свое здравое суждение о «параметрах процесса», таких как температура и вязкость, прежде чем отделять твердый осадок от жидкости. По мере дальнейшего снижения температуры начинали появляться кристаллы нитрата калия.
Выход бесцветных кристаллов, полученных в результате трудов Пера и Эсбьёрна, зависел от двух процессов, которые в то время оставались малопонятными. Один из них, вероятно, был первым из числа биотехнологических процессов, не применяющихся для увеличения срока хранения пищи. Так называемые нитрифицирующие бактерии почвы питались продуктами разложения содержащихся в навозе и моче белков, таких как мочевина (H2NCONH2), которая образуется при распаде азотсодержащей пептидной связи, соединяющей аминокислоты в белки.
Это похоже на то, что происходит на последних этапах изготовления сыра, и объясняет, почему зрелый бри или камамбер пахнут аммиаком (NH3), а порой и самым настоящим скотным двором. Превращение NH3 в NO3— химически сложнее, поскольку требует полной смены окружения атома азота: из атома с тремя дополнительными электронами (химики называют это «степень окисления –3»), окруженного тремя атомами водорода, он должен стать нитрат-ионом (NO3—), которому недостает пяти электронов (степень окисления +5). Ниже приведена простая реакция, в которой мочевина – основной азотсодержащий компонент мочи, не имеющий запаха, – превращается в аммиак и углекислый газ:
H2NCONH2 (т) + H2O (ж) → CO2 (г) + 2NH3 (г),
где (ж), (г) и (т) обозначают жидкость, газ и твердое вещество соответственно.
Легко представить, как атомы азота хватают каждый по одному атому водорода из воды, а атом углерода цепляется за ставший одиноким атом кислорода из Н2О. Одно короткое мгновение атомы держатся друг за друга, словно танцоры в хороводе, образуя замысловатое кольцо, а затем разлетаются в разные стороны, образуя новые созвездия. Мы называем подобную картину механизмом реакции.
А теперь в дело вступает биотехнология. Когда навоз и моча скапливаются в земле под ногами коров и лошадей, крошечные нитрифицирующие бактерии (которые не следует путать с азотфиксирующими бактериями[197]) принимаются за работу над молекулами аммиака. На самом деле эти бактерии живут за их счет, поскольку основным источником энергии для них является приведенная ниже реакция (в которой (aq) означает водный раствор):
6NH3 (г) + 12O2 (г) → 6HNO3 (aq) + 6H2O (ж).
Эта реакция выглядит гораздо более сложной, чем предыдущая, а в реальности дело обстоит еще хуже, поскольку это лишь сильно упрощенная схема процесса, который состоит из множества различных индивидуальных реакций.
Путаницу вносит и то, что уравнение химической реакции может подразумевать две разные вещи. Когда мочевина встречается с водой, уравнение реакции описывает фактическое столкновение реагентов, в результате которого получается один или два продукта – в нашем случае это аммиак и углекислый газ. В подобные реакции обычно вступают только две молекулы, поскольку вероятность одновременного столкновения трех молекул крайне мала: точно так же встреча с другом в центре города субботним утром – это обычное дело, но, для того чтобы трое друзей сошлись в одном месте, обычно требуется некоторое предварительное планирование, не говоря уж о 18 молекулах, которые необходимы для приведенной выше реакции.
Рисунок 34. Упрощенный механизм реакции образования аммиака и углекислого газа из мочевины и воды. Пунктирные линии обозначают образующиеся новые связи или распадающиеся старые.
В реакции нитрификации, в свою очередь, мы рассматриваем систему целиком: что попадает внутрь бактерии или набора различных бактерий в почве и что выходит наружу. Подобным же образом дети заходят в систему школьного образования с одного конца и выходят инженерами-химиками с другого. Мы знаем, что в промежутке они проходят множество важных стадий, но в очень упрощенном виде работает это именно так. Так же как и в школьном образовании, где есть (наверное, к счастью) и другие выходы, кроме как стать инженером-химиком, это уравнение не описывает всех вариантов того, что происходит с атомами азота. Однако, если мы попытаемся создать для бактерий идеальные условия, как это делалось в XVIII веке, когда строили специальные селитряные амбары, мы сможем заставить большую часть атомов азота пойти по желаемому пути.
Эти реакции выглядят сложными не только для нас; они и в самом деле настолько сложны, что лишь несколько избранных организмов могут с ними справиться, и у этих организмов развились для этого весьма своеобразные молекулярные механизмы. Ферменты – белки, которые катализируют химические реакции в живых организмах, и в них часто встречаются ионы металлов в стратегическом положении. Некоторые из них знакомы вам по полке с пищевыми добавками в местной аптеке: железо (Fe), цинк (Zn), кобальт (Co), марганец (Mn); однако нитрифицирующая бактерия, не настроенная работать поутру, не найдет тут подходящего средства, потому что у аптекаря редко найдешь молибден (Мо).
Ферменты, которыми пользуются нитрифицирующие бактерии, также содержат железо и медь, но использование молибдена выходит из ряда вон. Это переходный металл, совсем как железо, хром и кобальт, но он находится во втором ряду переходных металлов, а не в первом и поэтому существенно «тяжелее» ионов других металлов, которые используют различные живые организмы.
Но даже если бактерии хорошо поработали, нитрат и вода – не единственные ингредиенты в зловонных котлах зелейщиков: здесь требуется дополнительная очистка. Поэтому, когда варево остывает, в котлы добавляют золу, которая состоит главным образом из карбоната калия (К2СО3), известного также как поташ. Теперь мы переходим от биотехнологии к несложной химии простых солей – кристаллических веществ, содержащих положительно заряженные катионы (такие, как натрий +1) и отрицательно заряженные анионы (например, хлор), которые вместе дают то, что мы обычно называем солью – NaCl (т).
Когда вы добавляете хлорид натрия в воду, то видите, что он довольно быстро исчезает, растворяясь. Обычно это и происходит с солями, содержащими хлорид-ион, поскольку они растворимы; однако нитратсодержащие соли еще более растворимы (вот почему у нас нет гор, состоящих из нитрата натрия, как мы видели в главе 14). Белесая субстанция, остающаяся после костра или шашлыка, – зола – состоит из частиц органической материи, которые не сгорают и не образуют газы. Это по большей части ионы металлов, преимущественно калия (К+), а также натрия, и карбонат-ионы (СО32–), которые нужны ионам металлов для образования нейтральной соли.
Добавление К2СО3 в котлы приводило к образованию некоторого количества белой мути, которая оседала на дне. Это карбонат кальция и магния, СаСО3 и MgCO3, – тот же белесый налет, который вы обнаруживаете на дне и стенках чайника, если живете в местности с жесткой водой. Хлорид натрия также менее растворим, чем KNO3, и, выражаясь языком химии, он «выделялся из раствора». Оба этих осадка затем удаляли и выбрасывали. После этого, пока котлы медленно остывали, в них формировались кристаллы KNO3 – вероятно, сначала на поверхности и стенках сосуда, – и наконец, после длившегося целую неделю процесса, Пер и Эсбьёрн могли собирать кристаллы нитрата калия и везти этот продукт на королевский пороховой завод для дальнейшей переработки[198].
K+ (горячая H2O) + NO3— (горячая H2O) → охлаждение и частичное испарение → KNO3 (кристаллы) + H2O.
Ну а затем они перебирались к следующему несчастному крестьянину. Вот только в тот день возникли определенные осложнения, поскольку на глубине полуметра в земле под коровником господина Йонса они обнаружили человеческий череп. Вызвали земского начальника Ингевальда Кнутссона Пеппанеса с помощниками, и началось расследование с тщательным допросом местных жителей. Состоявшийся 23 июля 1708 года экстренный окружной суд постановил, что череп пролежал в земле долгое время и что невозможно продвинуться дальше в этом расследовании, поскольку никто из жителей деревни не признался, что ему что-либо известно об этом деле[199].
Крестьяне не испытывали добрых чувств к зелейщикам, в особенности из-за того, что те иногда были не из местных и приезжали издалека, чтобы заниматься своим ремеслом. Может быть, в этой деревне встретил свой страшный конец какой-нибудь особенно грубый и безжалостный представитель этого рода королевских войск, который невольно сам себе вырыл могилу и был убит недовольным крестьянином? Справедливости ради надо отметить, что в Англии зелейщиков ценили ничуть не больше: к примеру, допущенные ими злоупотребления обсуждались в парламенте в 1606 году