макроскопического мира в молекулы в микроскопическом мире.
Моли важны, когда такие ученые, как я, хотят определить количество молекул в конкретном образце. Этим мы и занимаемся, когда готовим торт или взрываем что-нибудь. Моль в мире химии – это что-то огромное. Просто чтобы вы имели представление: 106 – это миллион, 109 – это миллиард, а 1012 – это триллион. По сути, реальное значение одного моля составляет 602 секстиллиона или 602 200 000 000 000 000 000 000.
602 200 000 000 000 000 000 000!
Важно понимать, что три моля A, четыре моля B и один моль C не равно трем граммам A, четырем граммам B и одному грамму C. Нет, моли так не работают. Помните, мы с вами обсуждали атомную массу из периодической системы? Она указывает не только на среднее количество протонов и нейтронов, но также и на то, сколько граммов каждого элемента содержится в одном моле.
Возьмем, к примеру, кобальт. Если мы посмотрим на периодическую таблицу в конце книги, то увидим, что в одном моле кобальта содержится 58,93 грамма вещества. Итак, если для моего уравнения требуется три моля кобальта, то мне нужно отвесить 176,79 грамма (58,93 × 3 = 176,79). Если бы я добавила только 3 грамма, то химическая реакция… прошла бы не так хорошо, поскольку мне бы не хватало еще 173,79 грамма.
Мы используем моли и добиваемся идеального соотношения атомов для того, чтобы химическая реакция прошла успешно. Иначе это было бы точно так же, как если бы пекарь смешал шесть стаканов муки и один стакан сахара в попытке испечь именинный торт. Ничего не получится.
Дэниел Дулек, специалист по детским инфекционным заболеваниям, выступил на Ted-Ed[6] с докладом о молях. Он также привел одну из лучших аналогий, какую я когда-либо слышала. Если бы вам подарили моль пенни на день рождения, а потом начали бы уничтожать по миллиону долларов в секунду, то к вашему сотому дню рождения у вас бы сохранилось 99,99 % от подаренных вам денег.
Через сто лет, теряя по миллиону долларов каждую секунду, вы бы обеднели только на 0,01 %. Можете представить? Моль – это чертовски много.
Но давайте вернемся к начальной точке. Мы используем один моль для определения соотношения молекул, необходимого для проведения химических реакций. Количество молей в уравнении обозначается коэффициентом.
Итак, если нам необходимо три моля А, четыре моля В и один моль С для того, чтобы получить один моль D, то на самом деле это означает, что нам нужно 1,807 · 1024 молекул А, 2,409 · 1024 молекул В и 6,022 · 1023 молекул С для того, чтобы получить 6,022 · 1023 молекул D. (Помните, что 1 моль равен 6,022 · 1023, так что 3 моля А – это 1,807 · 1024 молекул или 6,022 · 1023 · 3.) Однако намного проще будет понять это, если вы посмотрите на следующее химическое уравнение:
3A + 4B + C → D
Теперь, когда вы знаете о молях и характерных для химии реакциях, мы можем перейти к самому интересному: изучению разных типов химических реакций.
Если вы посмотрите на типичные химические реакции, то увидите, что обычно там образуются или разрушаются связи. Данный процесс напрямую связан с поглощением или выделением энергии. Это ответвление химии называется термодинамикой – может, вы слышали о ней раньше, когда изучали механизмы нагревания и охлаждения. Но что вам точно нужно знать, чтобы понять материал главы, так это то, что термодинамика полностью посвящена изучению связи теплоты и работы с химическими реакциями.
Потоки энергии могут быть как положительными, так и отрицательными. Мы рассчитываем поток, необходимый для разрушения всех связей в реакции, и общую энергию, которая выделяется при образовании связей. Самый простой способ запомнить разницу:
Общая энергия = Разрушенные связи – Образованные связи
Если при реакции поглощается больше энергии, чем выделяется, то общая энергия реакции положительная. Для лучшего понимания давайте немного «поиграем» с цифрами. (Я буду использовать джоули как наиболее распространенную единицу энергии. В химии мы обычно используем килоджоули (кДж). Приставка «кило» подразумевает, что мы говорим о тысяче джоулей.)
Например, нам требуется 500 кДж, чтобы разрушить все предыдущие связи, а также нам нужно выделить 250 кДж путем образования новых молекул. Уравнение будет выглядеть следующим образом:
общая энергия = 500 кДж – 250 кДж
общая энергия = +250 кДж
В итоге мы получили положительный заряд, равный +250 кДж. В данном примере энергии, затраченной на разрушение старых связей, было больше, чем энергии, выделившейся в процессе образования новых. Возможно, из-за того, что связи в изначальной молекуле были прочнее, чем в молекулах, которые образовались после. Если реагенты (предыдущие связи) были стабильнее продуктов реакции (новые связи), то такие изменения энергия называются эндотермическими.
Каждый раз, когда мы разрушаем связь в реакции, нам нужно добавлять энергию. Это значит, что процесс разрушения связей всегда будет эндотермическим. Давайте посмотрим на другом примере, представленном ниже. Ковалентная связь А – В разрушена, остались только атом А и атом В:
А – В + энергия → А + В
Чтобы показать эндотермический процесс, нужно сложить элементы уравнения с энергией. Эти реакции действуют точно так же, как и игра «Алибаба» (Red Rover[7]), в которую мы играли в детстве. Помните эту игру? Одна команда выстраивалась в линию, держась за руки, а участник из второй команды должен пробежать между двумя людьми и попытаться разорвать их связь. Двое всегда держатся за руки. К тому же у бегущего должно быть достаточно энергии для того, чтобы он смог разрушить связь между человеком А и человеком B.
Чтобы полностью понять этот процесс, давайте подумаем о том, что происходит, когда вы поднимаетесь по лестнице. Если вы двигаетесь снизу вверх, то вам нужно использовать энергию, чтобы поднять ногу и наступить на следующую ступеньку. Усилия, прилагаемые вами, похожи на энергию, которая необходима для разрушения связи между атомами А и В.
Если мы добавим достаточное количество тепла, то атомы начнут разделяться: это происходит реакция разложения. Важно отметить, что существует тонкая грань между достаточным количеством энергии для проведения реакции и ее избытком, который все уничтожит. Я даже не помню точное количество раз, когда из-за этого уничтожала образцы в лаборатории и печенье в духовке. Ваша еда сгорает точно таким же образом: молекулы чернеют в процессе реакции разложения, из-за чего еда принимает горелый вид. Возможно, от нее будет исходить неприятный запах.
Некоторые молекулы, например гидроксид алюминия, при достаточной температуре очень быстро разлагаются. Связи в молекуле мгновенно разрушаются, в результате чего атомы отдаляются друг от друга. Во время разложения молекула поглощает много тепла, обеспечивая защиту от огня всему, что находится рядом. Именно поэтому гидроксид алюминия используют в качестве подавителя горения в некоторых материалах (поскольку тепло не может через него пройти). Как вы уже догадались, я обожаю это соединение из-за его сильных эндотермических свойств.
Некоторым молекулам для разложения требуется еще больше энергии. Например, когда молекула кислорода взаимодействует с большим количеством энергии, например ультрафиолетовым излучением, то связи в ней разрываются или диссоциируются. Энергия ультрафиолетового излучения настолько сильна, что молекула сразу же распадается на несколько частичек. Если это происходит с газообразным кислородом, которым мы дышим, – то, что называется двухатомным кислородом (О2) – то двойная связь разрушается, а два атома кислорода (О) освобождаются. Рассмотрим пример:
O=O → O + O
Такое разложение кислорода происходит только в том случае, если молекула поглощает поступающую энергию. Та разрушает двойную связь и заставляет два атома кислорода перейти в более высокое энергетическое состояние. Если данная реакция происходит в стратосфере, то два атома кислорода будут настолько недовольны, что сразу попытаются восстановить двойную связь. Некоторые из них «захватывают» третий атом кислорода и формируют озон (О3). Они делают все возможное, чтобы восстановить разрушенные связи с соседними атомами.
Но как же работает этот процесс? Что именно ответственно за создание связей?
Чтобы ответить на эти вопросы, вернемся к нашим расчетам. Мы уже знаем, что для разрушения существующих связей нам необходимо +500 кДж энергии. Но теперь давайте представим, что при образовании новых молекул выделяется 750 кДж энергии. Разница в энергии составила –250 кДж, и это означает, что во время химической реакции выделилось больше энергии, чем было поглощено.
Общая энергия = Разрушенные связи – Образованные связи
общая энергия = 500 кДж – 750 кДж
общая энергия = –250 кДж
Если новые связи прочнее исходных, то такая реакция называется экзотермической. И у реакций с негативной энергией есть одно классное свойство: они часто происходят самостоятельно.
Если мы посмотрим на экзотермическую реакцию между твердым барием и газообразным хлором, то увидим, как они объединятся и образуют новую связь. Барий в твердом состоянии образует ионную связь с газообразным хлором, из-за чего формируется новая ионная молекула – хлорид бария. Эту химическую реакцию можно записать в виде уравнения:
Ba + Cl2 → BaCl2
И хотя вам может показаться, что из уравнения ничего не понять, просто поверьте. Если я говорю, что барий и хлор при образовании ионной связи будут выделять немного энергии, все так и есть. При образовании новой связи выделяется энергия, поскольку у исходных веществ, перед началом реакции, было больше энергии, чем есть у тех, которые появились в результате.