С помощью электронов.
Если два или более атома соединяются, то образуется связь и происходит обмен или передача электронов. Связь могут иметь молекулы или сложные вещества. Отдельный атом никогда не станет молекулой или сложным веществом, потому что он всегда остается просто «атомом».
Но прежде чем мы перейдем к химическим реакциям, вам важно понять, что очень часто химики называют совокупность молекул «видом», «веществом» или даже «системой». Эти термины являются синонимами и обозначают одно и то же – совокупность молекул. Итак, когда я говорю о виде, вы должны понимать, что я имею в виду совокупность молекул. А когда я говорю о молекуле, то тут уже все и так понятно. Круто? Круто.
Сформированные между атомами связи увидеть очень легко, если понимать, что искать и куда смотреть: например, как соль растворяется в океане или как маска для лица «растворяет» комедоны. Атомы притягиваются друг к другу, и в этом они очень похожи на нас, людей! Так как протоны обладают положительным зарядом, а электроны – отрицательным, происходит нейтрализация (а это именно то, к чему стремятся все атомы).
Когда атомы находятся рядом друг с другом, они испытывают взаимное притяжение. Поскольку электроны располагаются снаружи атома, а протоны – внутри, то происходит два притяжения.
Пример: у нас есть два атома, атом А и атом В. Электроны атома А будут притягиваться к протонам атома В, а электроны атома В – к протонам атома А. Единственное, что может помешать электронам и протонам соединиться, так это то, что электроны двух атомов будут отталкивать друг друга.
Атомы могут не образовать связь, если они будут находиться слишком близко друг к другу. Если в кофейне о вас начнет тереться незнакомец, вы оттолкнете его, верно? Когда незнакомец вторгается в наше личное пространство, мы всегда стараемся создать дистанцию – нам просто будет так комфортнее. Иногда это означает, что нам нужно встать и уйти; у атомов этот процесс происходит точно так же. Если электроны одного атома находятся слишком близко к электронам другого, то они отталкиваются друг от друга и отдаляются на некоторое расстояние.
В конце концов, два атома могут находиться на идеальном расстоянии, при котором притяжение между электронами и протонами будет сильнее отторжения между двумя видами электронов. Проще говоря, притяжение между протоном и электроном достигнет своего максимума, а отторжение между электронами – минимума. Когда происходит такая ситуация, может образоваться связь.
Давайте представим, что вы и незнакомец из кофейни находитесь на комфортном расстоянии и заводите разговор. Если вас притягивает друг к другу, вы перейдете на следующую ступень: установление постоянной связи. Вероятно, вы встретитесь еще пару раз за чашечкой кофе или обменяетесь номерами телефонов. Но так как мы все-таки говорим о соединении атомов, то представим, что на следующей ступени они берутся за руки.
Когда атомы «берутся за руки», они образуют связь. По сути, связь в химии – это соглашение между двумя атомами. Теперь они будут всегда вместе, до тех пор, пока не появится более привлекательный атом. Представим, что я держусь за руки с прекрасным незнакомцем, и я буду делать это до тех пор, пока в помещение не войдет Райан Рейнольдс. Тогда я отпускаю руку того прекрасного незнакомца и бросаю его, чтобы установить «лучшую» связь. То же самое происходит с атомами.
Но есть небольшое различие. Я могла бы уйти в закат с Райаном Рейнольдсом и быть той же самой Кейт, которая недавно вошла в кофейню, и той же девушкой, которая держала за руку незнакомца. Ни Райан, ни незнакомец не забрали мою руку или ногу, верно? К сожалению, у атомов А и В не всегда все проходит так мирно.
В отличие от меня и незнакомца, когда два атома решают соединиться друг с другом, они перестают существовать как два отдельных, независимых атома. Когда они образуют связь, сразу же происходит обмен электронами. Поэтому иногда после распада связи атом А может иметь один или два электрона атома В.
Но когда атомы остаются вместе, мы стараемся проанализировать, насколько равномерно электроны распределяются между ними. И чтобы сделать это, нам нужно изучить характер атома, исследовать его состав. Самый простой способ сделать это – классифицировать атом как металл или неметалл. К счастью, отличить два этих типа друг от друга очень просто как в лаборатории, так и в обычной жизни.
Для начала, если металлы очистить, то они очень красивые. Металлы, например золото, кобальт или платина, блестят: они обладают способностью отражать падающий на них свет. К тому же большинство металлов имеют свойства ковкости и пластичности, благодаря чему они идеальны для изготовления ювелирных украшений. (Мы используем эти термины для описания металла, форму которого можно изменять.) Металлы также обладают высокой теплопроводностью, о чем вы, скорее всего, уже знаете: вы обожжетесь, если прикоснетесь к горячей кастрюле на плите. А кроме того, высокой электропроводностью. Это означает, что электроны большинства металлов могут перемещаться между металлами практически без сопротивления. Именно поэтому стоять во время грозы с зонтом – не самая лучшая идея. Металл, из которого обычно делается ручка (а также верхняя часть зонта), притягивает к себе молнию. А так как металлы хорошо проводят электрический ток, то именно из-за электронов люди умирают от удара током. С другой стороны, мы очень часто пользуемся этим свойством металлов, например, когда делаем аккумуляторы для телефонов.
Металлы с легкостью отдают свои электроны другим атомам, но при этом они редко образуют связи, в которых им нужно принимать чужие электроны. Металлы очень похожи на Санта-Клауса: он очень любит дарить подарки, но не любит их получать! (К сожалению, у атомов нет эквивалентов молока и печенья.) При объединении с другим металлом они должны принять чужой электрон; поэтому они стараются избегать подобных связей.
Элементы из группы неметаллов не отражают свет, непластичны и не обладают ковкостью. Термин «ковкость» используется в том случае, если вещество (обычно это металл) можно вытянуть в тонкую проволоку. Но что определяет неметаллы? Ну, они не являются металлами. (Да-да, я знаю, что это очевидно.) Большинство твердых неметаллов не блестят. Газообразные неметаллы в основном бесцветны, а это значит, что мы даже не можем увидеть эти элементы или сделать из них украшения.
Что вам еще нужно знать о неметаллах? Они обладают плохой тепло- и электропроводностью. Электроны с трудом двигаются в подобных элементах, так что многие из неметаллов инертны. (Вот почему все инертные газы, о которых я рассказала вам в прошлой главе, не вступают в химические реакции.) Проще говоря, их электроны не могут переходить от одного атома к другому так же легко, как у металлов.
Большинство неметаллов располагаются в верхнем правом углу периодической таблицы, начиная с углерода в четвертой группе и так по восьмую. В периодах ниже углерода неметаллы располагаются выше диагонали кремний – астат.
Металлов в пять раз больше, чем неметаллов, но при этом 99 % всего во Вселенной состоит из водорода и гелия – неметаллов! Другой неметалл – газообразный кислород – очень важен для выживания человечества. Самое интересное, что некоторые неметаллы стабильны, а некоторые – невероятно реакционноспособны.
Возможно, вам интересно, почему я так много времени уделяю металлам и неметаллам. Дело в том, что состав атома (это металл? или нет?) – первое, что необходимо понять перед определением того, какой тип связи образуется внутри молекулы того или иного элемента. В химии есть два основных вида связи: ковалентная и ионная.
Давайте начнем с ковалентной.
Простейшая форма ковалентной связи – это одинарная связь. Она образуется в том случае, если между двумя атомами есть одна общая электронная пара. По правде говоря, все ковалентные связи образуются тогда, когда у двух атомов появляются общие электронные пары. При одинарной связи каждый атом отдает по одному электрону. Давайте вернемся к предыдущему примеру и рассмотрим связь, которую я установила с Райаном Рейнольдсом.
Представим, что Райан левой рукой держит меня за правую руку. Между нами есть два электрона, и мы находимся на расстоянии вытянутой руки. На таком расстоянии я начинаю чувствовать, что мои «электроны» притягиваются его «протонами». И тут Райан решает образовать двойную связь: он поднимает свою свободную правую руку и берет меня за мою левую. Теперь мне нужно немного повернуться, чтобы нам было удобно. Расстояние между мной и Райаном сокращается; теперь мы стоим лицом к лицу. Наша «связь» стала крепче, так как между нами образовалось две связи. (Отсюда и происходит название «двойная связь».)
Двойная связь намного прочнее одинарной, а из-за расположения электронов атомы могут находится близко друг к другу. При двойной связи между двумя атомами располагаются четыре электрона: по одному в каждой «руке».
Чтобы образовать тройную связь, Райану нужно будет обхватить меня ногой (только не рассказывайте моему мужу!). Тройная связь позволяет атомам находиться невероятно близко друг к другу. Теперь мы с Райаном образовываем три связи: по связи на каждую пару рук и еще одна в том месте, где он обхватывает меня ногой. У нас есть три общих места, где мы обмениваемся электронами.
Немного математики: у нас есть три связи, в каждой связи – два электрона. Получается, что у нас есть шесть электронов, общих для двух атомов. Это одна из причин, почему тройная связь обладает большой прочностью и почему ее так сложно разорвать. К тому же в тройной связи атомы располагаются ближе друг к другу, так как у них есть шесть общих электронов.
Одинарные, двойные и тройные связи являются самыми распространенными типами связей в ковалентных молекулах. Вы взаимодействуете с ними постоянно. Например, они есть в вашем шампуне, зубной пасте или даже кружке утреннего кофе – а еще в вашей одежде, косметике и дезодоранте. Чуть позже я расскажу о том, что ковалентные связи постоянно окружают нас, где бы мы ни находились. Осмотритесь: большинство вещей возле вас содержат ковалентную связь. А я даже не знаю, где вы сейчас! Вот настолько распространены ковалентные связи в нашем мире.