увеличению степени беспорядка. Эти факторы действуют в противоположных направлениях, поэтому результирующая величина будет равна их разности:
(здесь энтропия умножена на температуру для адекватности единиц, ΔН° и TΔS° приведены в килоджоулях, так как К кДж/К = кДж).
Суммарная энергетическая функция системы называется стандартной энергией Гиббса реакции ΔG°T, индекс Т подчеркивает зависимость этой величины от температуры, что очевидно из уравнения (отметим еще, что ΔН° и ΔS° мало зависят от температуры).
По значениям G°T можно судить о возможности протекания реакций в направлении слева направо по химическому уравнению:
Например, синтез аммиака
при 25 °C возможен:
а при 350 °C невозможен:
Следовательно, при 25 °C имеется принципиальная возможность получения аммиака, а при сильном нагревании системы (реакция экзотермическая, ΔН° = -92 кДж) аммиак получить не удастся. Правда, при 25 °C реакция возможна только в принципе, так как она протекает очень медленно и с малым выходом. Ускорение реакций определяется факторами химической кинетики, а увеличение степени протекания – соответствующим смещением химического равновесия.
12.3. Обратимость реакций
Химическая реакция называется обратимой, если в данных условиях протекает не только прямая реакция (→), но также и обратная реакция т. е. из исходных веществ образуются продукты и одновременно из продуктов получаются реагенты:
Обратимые реакции не доходят до конца. Концентрации реагентов уменьшаются, что приводит к уменьшению скорости прямой реакции . Скорость же обратной реакции постоянно возрастает, поскольку увеличиваются концентрации продуктов.
Когда скорости прямой и обратной реакций станут одинаковыми ( = ), наступит состояние химического равновесия, при котором не происходит дальнейшего изменения концентраций реагентов и продуктов.
В состоянии равновесия концентрации реагентов и продуктов постоянны, их называют равновесными концентрациями и обозначают [А], [В], [D] и [Е], в отличие от концентраций сА, св, cD и сЕ в любой другой момент времени. Установлено, что:
Такое соотношение обозначают Кс и называют константой равновесия данной реакции:
Это выражение носит название равновесный закон действующих масс (К. Гулльберг, П. Воге, 1867).
Значение Кс характеризует состояние равновесия в данной реакции и определяется соотношением концентраций, т. е. величина Кс не зависит от каждой в отдельности равновесной концентрации – [А], [В], [D] или [Е].
Химическое равновесие не означает, что наступило состояние покоя. Прямая и обратная реакции протекают и в состоянии равновесия, но с одинаковой скоростью. Поэтому оно называется подвижным (динамическим) равновесием.
Подвижное химическое равновесие можно нарушить, оказывая на систему внешнее воздействие и тем самым изменяя условия протекания реакции – температуру, давление, концентрацию. При любом нарушении (сдвиге) химического равновесия система перейдет (сместится) в другое состояние равновесия.
Влияние условий на смещение химического равновесия определяется принципом, который установлен французским ученым A.-Л. Ле-Шателье (1884).
Современная формулировка принципа смещения равновесия, называемого принципом Ле-Шателье:
Рассмотрим подробнее влияние таких факторов, как температура, давление, концентрация, на смещение равновесия.
1. Температура. Повышение температуры смещает равновесие обратимой реакции в сторону процесса, идущего с поглощением теплоты (эндотермическое направление), а понижение температуры – в сторону процесса, идущего с выделением теплоты (экзотермическое направление).
Для экзотермической реакции:
Для эндотермической реакции:
Значение Кс обязательно изменится при повышении и понижении температуры, так как значения констант скорости k прямой (→) и обратной (←) реакций по-разному зависят от температуры, ведь это реакции между разными реагентами (соответственно А и В или D и Е). Следовательно, константа равновесия – функция температуры:
Примеры:
а) повышение температуры (нагревание):
б) понижение температуры (охлаждение):
2. Давление. Изменение давления оказывает влияние только на те системы, где хотя бы одно вещество находится в газообразном состоянии (твердые и жидкие вещества не учитываются, так как их собственный объем весьма мал по сравнению с объемом газов и паров).
Увеличение давления в обратимой реакции смещает равновесие с сторону процесса, идущего с уменьшением количества газообразных веществ, т. е. с уменьшением объема, а уменьшение давления – в сторону увеличения количества газообразных веществ, т. е. с увеличением объема:
а)
б)
При Σnреаг = Σnпрод изменение не вызовет смещения равновесия.
Примеры гомогенных реакций:
а) увеличение давления (сжатие):
б) уменьшение давления (расширение):
Примеры гетерогенных реакций (коэффициенты перед формулами конденсированных веществ не учитываются):
а) увеличение давления (сжатие):
б) уменьшение давления (расширение):
В реакциях с равными количествами газообразных реагентов и продуктов (здесь 2 = 2 в обоих примерах):
сдвиг равновесия наблюдаться не будет.
3. Концентрация. При увеличении концентрации одного из газообразных веществ (реагента или продукта), находящегося в равновесной системе, равновесие смещается в сторону расхода данного вещества. При уменьшении концентрации этого вещества равновесие смещается в сторону образования данного вещества. Изменение содержания твердых и жидких веществ не влияет на состояние равновесия.
Для некоторой реакции:
Смещение равновесия вправо можно было вызвать добавлением избытка реагента А (вместо В), а смещение влево возможно только избытком продукта D (другой продукт – твердое вещество).
Этот вывод следует непосредственно из равновесного закона действующих масс:
При добавлении в систему газа D равновесие сместится влево т. е. при протекании обратной реакции так увеличится содержание газов А и В, что соотношение концентраций останется постоянным и равным Кс. Отметим еще раз, что добавление конденсированного вещества (здесь твердого Е) не повлияет на состояние равновесия (сдвиг равновесия добавлением Е невозможен).
Примеры:
а) при добавлении аммиака равновесие сместится вправо:
б) при добавлении водорода равновесие сместится влево:
1. Гетерогенные реакции – это
1) Н2 + I2(г) → HI
2) Fe2(SO4)3(т) → Fe2O3(T) + SO3
3) Zn + H2SO4 → ZnSO4 + H2↑
4) CO + H2 → CO + H2O (nap)
2. При взаимодействии H2 с Cl2, Br2 и I2 в сосудах равного объема через 27 с образуется по 0,04 моль продуктов. Скорость реакции
1) выше для I2
2) выше для Cl2
3) одинакова
4) выше для Br2
3. Для гомогенной реакции А + В →… при одновременном увеличении молярной концентрации исходных веществ в 3 раза скорость реакции возрастет
1) в 2 раза
2) в 3 раза
3) в 6 раз
4) в 9 раз
4—6. Скорость реакции
4. 2CuО(т) + СО →…
5. 2FeO(т) + С(т) →…
6. N2 + 2С(т) + Н2 →…
при V = const и увеличении количества веществ в 4 раза изменится так:
1) возрастет в 4 раза
2) возрастет в 8 раз
3) возрастет в 16 раз
4) не изменится
7—8. Равновесие смещается вправо (→) при
7. нагревании
8. охлаждении реакционных систем
1) 2СО + O2 2СO2 +Q
2) 2HI + Н2 + I2 – Q
3) N2 + O2 2NO – Q
4) 2Н2 + O2 2Н2O + Q
9. Равновесие реакции этерификации СН3СООН + С2Н5ОН СН3СООС2Н5 + Н2O + Q
можно сдвинуть вправо (→)
1) добавлением серной кислоты
2) добавлением едкого натра
3) нагреванием
4) добавлением воды
10. Равновесие в гетерогенной реакции СаО(ст) + СО2 СаСO3(т) + Q сместится влево (←) при
1) добавлении СаО
2) добавлении СаСO3
3) сжатии
4) нагревании
11. Выход продукта в реакции CaS(т) + 2O2 CaSO4(т) + Q
можно увеличить