гидроанионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.
Распространенные слабые кислоты:
Основания – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:
Диссоциация малорастворимых оснований Mg(OH)2, Cu(OH)2, Mn(OH)2, Fe(OH)2 и других практического значения не имеет.
К сильным основаниям (щелочам) относятся NaOH, КОН, Ва(ОН)2 и некоторые другие. Самым известным слабым основанием является гидрат аммиака NH3 Н2O.
Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н+, и любые анионы, кроме ОН-:
Речь идет только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.
Аналогично диссоциируют двойные соли:
Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:
Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:
а) если гидроанион принадлежит сильной кислоте, то он сам диссоциирует также полностью:
и полное уравнение диссоциации запишется в виде:
(растворы таких солей обязательно будут кислыми, как и растворы соответствующих кислот);
б) если гидроанион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:
либо взаимодействие с водой (называемое обратимым гидролизом):
При α1> α2 преобладает диссоциация (и раствор соли будет кислым), а при α1> α2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO3-, H2PO4-, H2AsO4- и HSeO3-, растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между α1 и а2 изучаются только в высшей школе).
Оснóвные соли MgCl(OH), Cu2CO3(OH)2 и другие в своем большинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.
13.3. Диссоциация воды. Среда растворов
Сама вода – это очень слабый электролит:
Концентрации катиона Н+ и аниона ОН- в чистой воде весьма малы и составляют 1 10-7 моль/л при 25 °C.
Катион водорода Н+ представляет собой простейшее ядро – протон р+ (электронная оболочка катиона Н+ – пустая, 1s0). У свободного протона велики подвижность и проникающая способность, в окружении полярных молекул Н2O он не может оставаться свободным. Протон тут же присоединяется к молекуле воды:
В дальнейшем для простоты оставляется запись Н+ (но подразумевается Н3O+).
В воде содержание ионов Н+ и ОН одинаково; в водных растворах кислот появляется избыток ионов Н+, в водных растворах щелочей – избыток ионов ОН (за счет диссоциации кислот и оснований).
Типы среды водных растворов:
Содержание Н+ и ОН- в водных растворах обычно выражают через водородный показатель рН (читается пэ-аш) и аналогичный ему гидроксильный показатель рОН:
Для воды при комнатной температуре имеем:
следовательно, в чистой воде:
Это равенство справедливо и для водных растворов:
Практическая шкала рН отвечает интервалу 1—13 (разбавленные растворы кислот и оснований):
В практически нейтральной среде с рН = 6–7 и рН = 7–8 концентрация Н+ и ОН- очень мала (1 10-6 – 1 • 10-7 моль/л) и почти равна концентрации этих ионов в чистой воде. Такие растворы кислот и оснований считаются предельно разбавленными (содержат очень мало вещества).
Для практического установления типа среды водных растворов служат индикаторы – вещества, которые окрашивают в характерный цвет нейтральные, кислые и/или щелочные растворы.
Распространенные в лаборатории индикаторы – это лакмус, метилоранж и фенолфталеин.
Метилоранж (индикатор на кислотную среду) становится розовым в сильнокислом растворе (табл. 16), фенолфталеин (индикатор на щелочную среду) – малиновым в сильнощелочном растворе, а лакмус используется во всех средах.
13.4. Реакции ионного обмена
В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов. При этом все элементы реагентов могут сохранять свои степени окисления (обменные реакции) или изменять их (окислительно-восстановительные реакции). Примеры, приводимые далее, относятся к обменным реакциям (о протекании окислительно-восстановительных реакций см. разд. 14).
В соответствии с правилом Бертолле, ионные реакции протекают практически необратимо, если образуются твердые малорастворимые вещества (они выпадают в осадок), легколетучие вещества (они выделяются в виде газов) или растворимые вещества – слабые электролиты (в том числе и вода). Ионные реакции изображаются системой уравнений — молекулярным, полным и кратким ионным. Ниже полные ионные уравнения опущены (читателю предлагается составить их самому).
При написании уравнений ионных реакций надо обязательно руководствоваться таблицей растворимости (см. табл. 8).
Примеры реакций с выпадением осадков:
а)
б)
в)
г)
Внимание! Указанные в таблице растворимости (см. табл. 15) малорастворимые («м») и практически нерастворимые («н») соли выпадают в осадок именно в том виде, как они представлены в таблице (СаF2↓, PbI2↓, Ag2SO4↓, AlPO4↓ и т. д.).
В табл. 15 не указаны карбонаты – средние соли с анионом CO32-. Следует иметь в виду, что:
1) К2СO3, (NH4)2CO3 и Na2CO3 растворимы в воде;
2) Ag2CO3, ВаСO3 и СаСO3 практически нерастворимы в воде и выпадают в осадок как таковые, например:
3) соли остальных катионов, такие как MgCO3, CuCO3, FeCO3, ZnCO3 и другие, хотя и нерастворимы в воде, но не осаждаются из водного раствора при проведении ионных реакций (т. е. их нельзя получить этим способом).
Например, карбонат железа (II) FeCO3, полученный «сухим путем» или взятый в виде минерала сидерит, при внесении в воду осаждается без видимого взаимодействия. Однако при попытке его получения по обменной реакции в растворе между FeSO4 и К2СO3 выпадает осадок основной соли (приведен условный состав, на практике состав более сложный) и выделяется углекислый газ:
Аналогично FeCO3, сульфид хрома (III) Cr2S3 (нерастворимый в воде) не осаждается из раствора:
В табл. 15 не указаны также соли, которые разлагаются водой — сульфид алюминия Al2S3 (а также BeS) и ацетат хрома (III) Cr(СН3СОО)3:
Следовательно, эти соли также нельзя получить по обменной реакции в растворе:
(в последней реакции состав осадка более сложный; подробнее такие реакции изучают в высшей школе).
Примеры реакций с выделением газов:
Примеры реакций с образованием слабых электролитов:
Если реагенты и продукты обменной реакции не являются сильными электролитами, ионный вид уравнения отсутствует, например:
13.5. Гидролиз солей
Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже речь идет о средних солях).
Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:
1) диссоциация соли в растворе – необратимая реакция (степень диссоциации α = 1, или 100 %);
2) собственно гидролиз, т. е. взаимодействие ионов соли с водой, – обратимая реакция (степень гидролиза α < 1, или 100 %).
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей КCl, NaNO3, Na2SO4 и BaI2 среда нейтральная.
В случае взаимодействия аниона растворенной соли с водой процесс называется гидролизом соли по аниону.
1)
2)
Диссоциация соли KNO2 протекает полностью, гидролиз аниона NO2 – в очень малой степени (для 0,1М раствора – на 0,0014 %), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион ОН-), в нем рН = 8,14.
Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO2-, отвечающий слабой азотистой кислоте HNO2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным: