Химия — просто — страница 12 из 24



Также Майер пришёл к выводу, что источником работы, которую производит организм, служит дыхание. Недаром ведь при подъёме в гору или поднятии тяжестей наше дыхание становится более учащённым и энергичным, нежели когда мы находимся в состоянии покоя. Кроме того, Майер пришёл к заключению, что помимо материи в природе существует ещё и другая постоянная величина — нечто невесомое, способное являться в разных видах (таких как теплота, свет, движение, электричество и т. д.).

Это неизменное нечто он назвал «силой», но термин оказался неудачным: тем же самым словом в физике уже обозначали другую величину. Сейчас понятие, введённое Майером, называется «энергией».

Учёным миром того времени идеи Майера были восприняты холодно. Его работу «Количественное и качественное определение сил» даже не удостоили публикации в издававшемся Либихом журнале «Анналы физики и фармацевтики». Тогда Майер, не утративший интереса к исследованиям, занялся пополнением научных знаний, чтобы привести свои взгляды в соответствие с требованиями науки. В итоге он выпустил новую статью «О силах мёртвой природы», которую уже опубликовали. Однако официальный научный мир продолжал его игнорировать.

Судьба открытий Джоуля и Майера была примерно одинакова. Простые опыты Джоуля не вызывали сомнений, но оспаривалось их глобальное, космическое значение. Работы же Майера, напротив, рассматривались с космической точки зрения, но им не доверяли как слишком «философским».

Почти одновременно с изданием своего труда Майер женился, но его новоиспечённая супруга не разделяла научных взглядов мужа. Из-за частых семейных скандалов и не слишком приятных столкновений с внешним миром нервная система Майера постепенно ослабела, и в 1849 году с ним случился припадок. Выпрыгнув из окна второго этажа, он повредил себе ноги. Родные и близкие, не поняв причину нервного срыва Майера, решили, что он страдает манией величия, и поместили его в психиатрическую лечебницу. Там Майера лечили наравне с настоящими помешанными, то есть теми же средствами: холодный душ, электрошок и т. д.

Разумеется, такое лечение привело лишь к ухудшению самочувствия, и врачи поспешили выписать Майера из лечебницы.

Возможно, «чёрная полоса» в судьбе Майера так бы и продолжалась, если бы его идеи не начали постепенно проникать в научный мир. Практически в то же самое время учёные всерьёз заинтересовались и опытами Джоуля. В 1847 году знаменитый немецкий физик Герман Гельмгольц сформулировал закон «сохранения энергии», придав ему математическое выражение, и на целом ряде примеров продемонстрировал применение данного закона в самых различных областях физики. Благодаря этому обстоятельству Майер получил признание уже при жизни, а правительство даже наградило его дворянским званием.



Герман Гельмгольц


Гениальные рассуждения немецкого врача и блестящие опыты английского пивовара положили начало чрезвычайно важному принципу, позволившему объединить все отрасли физики с химией. И этим объединяющим понятием стало понятие «энергия».

Научный мир принял за основу, что все явления (физические и химические) представляют собой превращения энергии из одного вида в другой. Соответственно, были выделены следующие виды энергий:

механическая энергия (энергия положения, энергия движения, энергия формы),

тепловая энергия,

лучистая энергия,

электрическая энергия,

магнитная энергия,

химическая энергия,

духовная энергия.

Глава 7. Мал, да удал. Атом

Итак, теперь нам с тобой известны три ступени развития химии. Для закрепления материала напомню о них коротко, пунктирно. На первой ступени наука довольствуется сбором фактов, а её представители занимаются наблюдениями и записью результатов. Проще говоря, первая ступень — это период наблюдения, он характерен для древних народов и алхимиков.

Введение понятия «флогистон» подняло химию на вторую ступень развития: наступил период систематики, когда учёные озаботились созданием системы химических тел на основе их происхождения. Усовершенствовать химическую систематику помогла теория горения Лавуазье.

Вместе с тем благодаря открытию общих законов природы — закона сохранения массы и закона сохранения энергии — в химии произошёл серьёзный переворот, и наука поднялась на третью ступень развития: из описательной превратилась в рациональную.

Следующий вопрос, назревший в области химии, был сформулирован так: из чего состоит окружающая нас материя? Нет — нет, речь в данном случае шла не о химическом составе материи, а о том, как выглядит и что собой представляет самая маленькая частица, из которой состоят все окружающие нас предметы? И существует ли такая частица вообще?

Для наглядности обратимся к примерам. Итак, если мы взглянем на спил дерева, то увидим кольца. Если положим под микроскоп камень, то увидим отдельные кусочки, спаянные стекловидной массой. Если приглядимся к разрезу металлического рельса, то различим отдельные кристаллики, из которых и состоит этот кажущийся нам однородным предмет. Если же посмотрим на каплю чистой воды, то даже при увеличении мы не сможем выделить в ней отдельные частицы.

И здесь нам опять придётся вернуться на первую ступень развития химии — чтобы проследить за развитием человеческой мысли в данном вопросе.

Предположение, что все тела состоят из отдельных мелких частичек, между которыми имеются промежутки, первым высказал древнегреческий философ Демокрит (460–370 гг. до н. э.). Эти малые частички он назвал «атомами». В переводе с древнегреческого языка слово «атом» означает «неделимый». А гипотеза, основывающаяся на существовании этих частиц и рассматривающая их свойства, называется «атомистической гипотезой».



Демокрит


Так можно ли разделить неделимый «атом»? Если отклониться от современного понимания сущности атома, то мысленно мы можем, конечно, его разделить. А вот на практике каждая такая попытка ограничивалась техническими возможностями, имевшимися в распоряжении учёных на конкретный момент времени. Впрочем, в XVIII веке такой задачи перед ними ещё и не стояло. Важнее было понять, какова же самая маленькая существующая частичка?

Решающим моментом в данном вопросе является предположение, что любое вещество построено из отдельных частиц. Но здесь возникает очередной вопрос (его, кстати, очень часто задают современные школьники): для чего нам это знание может пригодиться и какую конкретную пользу оно может принести?

Чтобы положить конец беспредметному словоблудию, давай рассмотрим конкретные примеры. Всем нам прекрасно известно, что большинство тел при нагревании расширяются, а при охлаждении, наоборот, сжимаются. Если допустить, что эти тела состоят из сплошного, монолитного вещества, вывод напросится один: объём этих тел должен оставаться неизменным. Но мы-то ведь знаем, что это не так! Мы ведь видим на практике совершенно обратное!

Хорошо, тогда давай предположим, что вся материя построена из атомов и что объём атомов не изменяем, но при этом между атомам и есть пустоты. Вот это уже проще представить и объяснить, правда? Ведь тогда пустоты, отделяющие атомы друг от друга, смогут менять свой объём в зависимости от давления или температуры. Согласен?

Другой пример. Все мы миллион раз видели, как сахар растворяется в воде. А ты задумывался, почему сахар исчезает? Что с ним происходит? И вот здесь нам на выручку приходит атомистическая гипотеза: с её помощью мы легко можем представить, как частички сахара размещаются между частицами воды, которые раздвигаются, чтобы освободить им место.

Подобным же образом атомистическая гипотеза помогает нам получить представление о химических соединениях. Например, что вода — это соединение атомов водорода с атомами кислорода.

Приведённые примеры показывают, что предположение о существовании атомов, которое не поддавалось опытному доказательству в XIX веке, тем не менее позволило учёным того времени вывести верные заключения об устройстве окружающего мира. Практически тогда же они пришли к выводу, что отдельные атомы могут соединяться друг с другом, образуя своеобразные скопления. Такие группы, состоящие из двух и более атомов, мы и по сей день называем молекулами.



Молекула вещества


Кстати, забавный факт: в школьных учебниках того времени физика определялась как наука о молекулах, а химия — как наука об атомах. При этом атомы и молекулы считались тогда не реально существующими, а всего лишь плодом воображения, порождением человеческой фантазии.

Поверив наконец в то, что вся материя, любое вещество состоит из атомов, учёные поставили перед собой очередной закономерный вопрос: а сколько же весит этот самый атом?

На самом деле массу (вес) атомов начали вычислять ещё в XVII веке, причём даже не подозревая об этом. Дело в том, что немецкий химик Иеремия Вениамин Рихтер (1762–1807) и Иосиф Людовик Пру (1755–1826) открыли в своё время три закона стехиометрии. Подробно разбирать эти законы мы не будем, так как иначе уйдём от лёгкого повествования к сложным математическим расчётам и там заблудимся. Просто коротко остановимся на выводах, прямо или косвенно вытекающих из законов и опытов двух этих учёных.



Иеремия Вениамин Рихтер


Впрочем, первый закон стехиометрии я всё же здесь приведу, поскольку он довольно прост.

Два тела соединяются друг с другом в определённом весовом соотношении.

Например, водород соединяется с хлором и образуется соляная кислота (HCl). Причём весовое соотношение водорода к хлору в соляной кислоте всегда выражается числовым соотношением 1:35,5. И это соотношение никогда не меняется. Если чего — то будет больше или меньше, то какое-то вещество (то, которого было больше) попросту не прореагирует полностью. А теперь ради интереса посмотри в таблице Менделеева на молярные массы водорода и хлора. Знакомые цифры?! А ведь химики XVII века даже ещё и не подозревали, что соляная кислота состоит из атомов водорода и хлора! Они просто брали одно вещество, добавляли к нему другое и получали третье. И при этом умудрялись определять оптимальное соотношен