Химия — просто — страница 13 из 24

ие исходных веществ, необходимое для полного их реагирования (без остатка).

То есть примерные веса элементов в XIX веке уже были известны. И они прекрасно укладывались в атомистическую теорию, которая начинала рассматривать химизм реакций.

Также учёные доказали, что одни и те же элементы, соединяясь между собою, могут образовывать разные вещества. В частности, английский химик Джон Дальтон (1766–1844), уже знакомый нам учитель юного Джеймса Джоуля, доказал, что при образовании молекул в её состав может входить только целое число атомов. Например, какое-нибудь соединение не может состоять из 1,5 атомов. Вроде бы логично, но учёные тех времён только начали развивать атомистическую теорию, постепенно выдвигая на её основе новые законы.



Джон Дальтон


Дальтон первым вызволил из забвения Демокритовы атомы и применил их для объяснения химических явлений и законов. Он быстро понял, что с помощью атомистической гипотезы можно наглядно и легко представить все основные законы химии.

Ответить на вопрос «Сколько весит атом?» учёные по-прежнему не могли, так как в виду микроскопичности размеров его невозможно было взвесить никакими известными им методами. Тогда они пошли другим путём. Те веса, что учёным удалось вычислить, были признаны относительными, то есть вычисленными по отношению к какому-то одному элементу. Например, как в соотношении водорода к хлору в соляной кислоте (1:35,5): атомный вес водорода был принят за единицу, а относительно него был посчитан вес хлора.

В качестве такого элемента можно было выбрать водород или, например, кислород, атомный вес которого решили считать равным 16. Но, как ты, наверное, уже догадался, при таком подходе к делу мог начаться полный кавардак. Если одни учёные начнут брать за точку отсчёта водород, а другие — кислород, путаницы не избежать.

После введения гипотезы Дальтона в науку подобная неопределённость существовала в химии ещё долго, сильно затрудняя проведение научных исследований. Пользуясь неодинаковыми основными единицами, а следовательно и различными формулами соединений, учёные перестали понимать друг друга.

Любопытный факт: до последней четверти XIX века формулу воды писали не H2O, а НО. Считалось, что на один атом водорода приходится один атом кислорода.

Выход из создавшегося положения нашёл итальянский учёный Амедео Авогадро (1776–1856). Он родился в Турине, был дворянином и, как и Лавуазье, должен был пойти учиться в адвокатуру. Но, опять же как Лавуазье, отказался от изучения законов, придуманных человеком, в пользу законов природы. В 33 года Авогадро стал доцентом «философии природы», а когда сделал себе в научных кругах имя, король Виктор Эммануил создал для него в Турине специальную кафедру математической физики. Правда, спустя три года кафедру упразднили и восстановили только в 1833 году, но её тут же занял знаменитый французский математик Огюстен Луи Коши. И лишь через год кафедра вновь отошла в распоряжение Авогадро.



Амедео Авогадро


Главная заслуга Авогадро заключается в том, что он выдвинул гипотезу, позволившую наконец определять относительные веса молекул. В 1811 году он предположил, что одинаковые объёмы различных газов содержат одинаковое число частиц. Три года спустя к аналогичному заключению пришёл и знаменитый физик Ампер, однако другие учёные ещё долго не признавали эту гипотезу, несмотря на её простоту и огромное значение для определения атомных весов.

Наряду с вопросом о весе атомов и молекул перед химиками стоял также вопрос о размерах, диаметрах этих частиц. Поскольку разглядеть их в микроскоп не представлялось никакой возможности, учёные чего только не придумывали! В частности, делали из золота сверхтонкую пластинку, измеряли её площадь, взвешивали и, зная плотность золота, высчитывали толщину, которая в расчётах могла достигать 0,000066 миллиметра. Учёные приходили к выводу, что атом много меньше этого значения. Немецкий физик Рентген получал плёнки толщиной в 0,0000005 миллиметра. Значит, атом ещё меньше.

На основании других, более сложных опытов, проведённых независимо друг от друга, учёные вычислили, сколько частиц содержится в одном кубическом сантиметре газа при атмосферном давлении и нуле градусов по Цельсию. Поскольку ранее Авогадро установил, что в одинаковом объёме различных газов содержится одинаковое количество частиц, это число было принято за константу (постоянную величину). Правда, ей присвоили имя австрийского физика Лошмидта (постоянная Лошмидта), так как он первым установил, что в одном кубическом сантиметре газа содержится 32»1018 частиц. Теперь, если признать, что частица имеет форму шара, легко стало вычислить её радиус. В ходе дальнейших расчётов удалось установить, что размер одной частицы чрезвычайно мал: составляет примерно 10-9 метра.

Такие размеры очень трудно представить даже мысленно. Да и зачем, если у нас под рукой всегда есть математика, способная проникнуть туда, куда не суждено проникнуть человеческому глазу? Так что теперь задача по определению размера частиц полностью легла на плечи математиков.



Перечень символов химических элементов Дж. Дальтона (1808)


Однако существует и другой путь. Благодаря радию заветная мечта физиков, заключающаяся в непосредственном визуальном наблюдении за атомами, приблизилась к осуществлению. Как известно, радий излучает альфа-частицы, а альфа-частица — это ядро атома гелия. Так вот если в тёмной комнате положить руду, содержащую радий, то на установленном напротив фосфоресцирующем экране можно будет наблюдать вспыхивание маленьких огоньков. Эти огоньки возникают при столкновении ядер атомов гелия с материалом экрана-пластинки. И человеческий глаз прекрасно данный процесс воспринимает.

Глава 8. Органика — наше всё!

К началу XIX века были известны сотни органических соединений, были сделаны их точные анализы, но вот классифицировать эти соединения учёные ещё не умели. Первые попытки делали Либих и Вёлер, о которых я тебе уже рассказывал, но их методы оставляли слишком большой простор для различных вариаций. Одни и те же вещества в те годы можно было классифицировать по-разному, ведь при классификации органических веществ учёные в основном руководствовались каждый своим «химическим чутьём». Химия же — наука точная и двусмысленностей допускать не должна.

В 1858 году известный немецкий химик-органик, профессор Боннского университета Фридрих Кекуле (1829–1896) выяснил, что метан (он же — болотный газ) содержит один атом углерода и четыре атома водорода. Пользуясь химическими символами и атомистической гипотезой, он выразил состав метана формулой CH4. Далее, воспользовавшись понятием валентности, которое английский химик Э. Франкланд ввёл в 1853 году, установил, что углерод — это четырёхвалентный элемент.



Фридрих Кекуле


Не остановившись на достигнутом, Кекуле решил заменить водород в молекуле метана другим элементом, например хлором. А в ходе экспериментов убедился, что на хлор можно заменить как один атом водорода, так и все четыре и получить при этом четыре новых соединения:



Далее Кекуле допустил, что атомы углерода могут соединяться между собой в длинные цепочки. Так он получил ряд: метан (CH4), этан (C2H6), пропан (C3H8), бутан (C4H10) и т. д. В те времена были известны углеродные цепи, содержавшие до 50 атомов углерода. В каждом таком соединении любой атом водорода можно заменить на какой — нибудь другой атом, например на хлор, йод, бром и др. И получатся совершенно новые вещества.



А если пойти ещё дальше, то любой атом водорода можно будет заменить на целую углеродную цепочку. Как видишь, теперь наше углеродное соединение выглядит не линейно, а больше похоже на кроссворд. И таких комбинаций существует бесконечное множество. Вот чтобы не запутаться во всём этом множестве органических соединений, учёные и пришли к выводу, что необходимо указывать их структурную формулу. То есть — рисовать взаимное расположение атомов в молекуле.

Помнишь случайно открытое Либихом и Вёлером явление «изомерии»? Они тогда независимо друг от друга, даже не зная друг о друге, почти одновременно открыли вещества одинакового состава, но имеющие разные свойства: гремучую кислоту и циановую кислоту. Оба эти вещества имеют формулу HCNO. Но вот структура у них разная:



Структурную теорию химики всех стран приняли с восторгом. Основные разработки в данном направлении вели уже известный нам Фридрих Кекуле, шотландский химик Арчибалд Купер, французский химик Шарль Вюрц и, конечно же, знаменитый русский химик Александр Бутлеров.



Александр Михайлович Бутлеров


Александр Михайлович Бутлеров (1828–1886) родился в Казанской губернии. В 16 лет он поступил в казанский университет на химическое отделение, где блистали такие профессора, как К. Клаус, известный исследователь платиновых металлов и первооткрыватель рутения, и органик Н. Зинин, первым получивший искусственным путём анилин и другие важные соединения. Именно они руководили первыми шагами Бутлерова на научном поприще. Поначалу он занимался преимущественно преподавательской работой, но затем его затянуло в научную деятельность. Решающее влияние на судьбу органической химии в России оказала поездка Бутлерова за границу, где он встречался и подолгу беседовал с великими учёными из разных стран мира.

Между прочим, командировка молодых учёных за границу считалась в те времена одним из лучших способов подготовки научных сил. Благодаря такой поездке Бутлеров накопил огромный запас идей для своей будущей научной деятельности в России. Именно в статьях Бутлерова мы впервые встретим потом стройное изложение разных теорий, начисто лишённое противоречий, характерных для работ Вюрца и Кекуле. Все работы Бутлерова были направлены в основном на то, чтобы опытным путём доказать факты, предсказанные теорией строения.