Химия — просто — страница 21 из 24

В Соединённых Штатах Америки в начале Второй мировой войны работам по делению урана не уделялось большого внимания. В феврале 1940 года в университете Миннесоты физик Альфред Ниер использовал для разделения U-238 и U-235 масс-спектрометр. Полученный продукт позволил Джону Даннингу, уже в Колумбийском университете, показать, что под воздействием медленных нейтронов действительно происходит деление ядер U-235. Основной американский проект, разработанный учёными Энрико Ферми и Лео Сциллардом, заключался в строительстве того, что впоследствии назвали «ядерным реактором». На проведение работ правительством США была выделена сумма в 6000 долларов.

В целом военное использование урана считали в США делом малоперспективным и летом 1941 года хотели даже свернуть все работы, ведущиеся в данном направлении. Однако ситуация резко изменилась после атаки японцев, совершённой 7 декабря 1941 года на военную базу Пёрл-Харбор. Все работы по созданию ядерного реактора были активизированы, и в мае 1942 года началось его возведение под западной трибуной стадиона Чикагского университета. Конструкция реактора состояла из чередующихся слоёв чистого графита и графита с помещённым в него ураном или диоксидом урана: после двух слоёв графита следовал слой графита с ураном, потом снова два слоя графита и т. д. Реактор достиг критического размера после того, как из чередующихся блоков было выложено 57 слоёв. Он имел 7,7 м в длину, 6,1 м в поперечнике, содержал 385 тонн графита, 6 тонн урана и 34 тонны диоксида урана. 2 декабря 1942 года Ферми запустил реактор, но тот произвёл энергии так мало, что её хватило бы максимум на то, чтобы зажечь лампочку от карманного фонарика. Один из присутствовавших при пуске реактора членов комиссии с сарказмом заметил, что он «видел настоящее чудо». Помимо выработки энергии в реакторе происходило также образование атомов плутония-239 из урана-238.





Основные работы по урану в годы Второй мировой войны были выполнены в США в рамках так называемого «Манхэттенского проекта», который с 17 сентября 1942 года возглавил генерал-лейтенант Лесли Грувз. Научное руководство осуществлял физик-теоретик Джулиус Роберт Оппенгеймер. В рамках реализации проекта были построены заводы по разделению изотопов урана и первые атомные реакторы для наработки плутония, а также налажено производство чистого плутония. В городе Ханфорд на берегу реки Колумбия были построены три графитовых реактора общей мощностью 200 МВт. Для их охлаждения требовалось 350 000 литров воды в минуту. После облучения в реакторе уран поступал на радиохимический завод для выделения из него образовавшегося плутония.



Первый ядерный реактор Чикагского университета



Макет урановой бомбы «Литл Бой», сброшенной на Хиросиму



Хиросима, после бомбардировки 1945 г.



Хиросима, после бомбардировки 1945 г.


Завод для разделения изотопов урана был построен в городе Ок-Ридж, основанном в 1940 году в рамках «Манхэттенского проекта» и занимавшем площадь около 250 км2. В итоге к 24 июля 1945 года было произведено 40 кг урана с 80 %-ным содержанием U-235, что уже позволяло использовать его в атомной бомбе. Плутония же было наработано столько, что его хватило бы и на две атомные бомбы. В результате 16 июля 1945 года в штате Нью — Мексико было проведено первое испытание ядерного оружия на плутониевом заряде. Спустя совсем короткий промежуток времени, 6 августа 1945 года на японский город Хиросиму была сброшена урановая бомба, а 9 августа на город Нагасаки — плутониевая. Последние две операции не были обязательными — их провели исключительно в целях устрашения.

А как же обстояли дела в СССР? Первый атомный реактор в СССР был запущен под руководством советского физика И. В. Курчатова 25 декабря 1946 года. А испытание первой советской атомной бомбы прошло в 1949 году. После этого учёные-атомщики двух стран — США и СССР — пошли дальше и создали термоядерные бомбы, при производстве которых используется как плутоний, так и уран.

Таким образом, человечество не просто вступило в ядерную эпоху развития технологий, но и получило при этом мощное ядерное оружие и отличный источник энергии. Опасные в неумелых руках и источник безграничных возможностей в благородных руках — ядерные технологии.

Использование радиоактивного распада урана или плутония в ядерных реакторах дало человечеству источник дешёвой энергии. Причём, как показала практика, данный вид энергии более экологичен, чем другие, при которых, к примеру, происходит сжигание угля или нефтепродуктов. Атомные электростанции не приводят к изменению рельефа местности, как, например, гидроэлектростанции, приводящие порой к затоплению больших территорий земли. Словом, все другие известные на сегодняшний день альтернативные источники энергии не способны пока конкурировать с атомной энергетикой в промышленных масштабах.

Изучение и открытие новых радиоактивных изотопов привело к созданию радиофармпрепаратов, которые используются при медицинской диагностике пациентов и лечении раковых заболеваний. Также некоторые радиоактивные изотопы используются в качестве «батареек» для космических аппаратов, отправляющихся в полёт с целью изучения дальних от солнца планет. На таких расстояниях солнечные батареи малоэффективны.

Возможно ли в настоящее время использование сверхдержавами ядерного оружия друг против друга? Вряд ли, так как все прекрасно понимают, что это путь в один конец. И это будет конец того мира, который мы знаем и любим.

Глава 13. Назад в будущее

Вот, мой друг, мы и прошли с тобой виртуальный путь от древних времён до наших дней и увидели, как благодаря химии и её союзу с физикой поначалу медленно, а потом уже с огромной скоростью развивались знания человечества, приведшие к современным научно — техническим достижениям.

К настоящему времени учёными открыто 118 химических элементов. Название последнего элемента — оганесон — было утверждено в 2016 году международной организацией ИЮПАК. Элемент был назван в честь российского физика-ядерщика Юрия Цолаковича Оганесяна, проводившего ядерные исследования в университете города Дубна, и это второй случай в истории, когда химический элемент был назван в честь своего первооткрывателя ещё при его жизни.

А теперь, ознакомившись вкратце с современными технологиями и уровнем развития мировой науки, давай, мой друг, пофантазируем, какие открытия и какие технологии могут ждать нас в ближайшем будущем. Для этого рассмотрим самые актуальные из направлений.



Фрагмент ДНК. Компьютерная реконструкция


Биохимия. Эта наука настолько обширна, что от неё можно ожидать чего угодно — начиная от таблеток для ума и заканчивая эликсиром вечной жизни.

А если серьёзно, то биохимия способна дать нам лекарства от самых страшных болезней, которым подвержено человечество: от всевозможных форм рака, болезни Альцгеймера, деменции и многих других неизлечимых или трудноизлечимых болезней.

Возможно, лекарств от каких-то болезней не существует вовсе, но тогда, задействовав генетику, в будущем учёные смогут править гены людей на стадии эмбриона и тем самым снижать риски возникновения этих болезней. А если общество будет готово морально, то биохимики и генетики в принципе смогут управлять геном человека так, что здоровью будущего потомства позавидуют даже самые сильные и здоровые спортсмены мира. Образно говоря, на свет появятся своего рода генно — модифицированные люди.

Конечно, многих подобное достижение науки может напугать. Или возмутить: как это человек смеет ставить себя выше Бога и конструировать будущих детей в пробирке по своей прихоти?! Рождение ребёнка — это вам не компьютерная игра, где можно подбирать персонажу цвет глаз, волос и форму носа по собственному вкусу!



Овечка Долли


Словом, одних попросту испугают неизвестные последствия, а другие сочтут такую работу учёных богохульством. Но ведь наверняка найдутся и третьи, те, кто давно уже заметили и поняли, что достижения медицины за последние 100 лет практически свели так называемый «естественный отбор» на нет. Если раньше сама природа-матушка жёстко и беспощадно отсеивала больных, слабых и беспомощных, то современная медицина позволяет многим из тех же слабых и беспомощных продолжать жить и даже распространять свои гены. Поэтому, вполне вероятно, сформируются течения людей, которые будут выступать за то, чтобы самостоятельно генетически программировать качества своих будущих детей.

Повторюсь, что такое достижение действительно пугает вопросом: в кого могут превратиться люди? Но также представь, что дети будущего (возможно, и твои в том числе) смогут задерживать дыхание под водой на 10 минут, бегать быстрее автомобиля, иметь сильный иммунитет, красивую внешность, высокий интеллект. Не правда ли, заманчивая перспектива?!



Искусственное оплодотворение



Наноробот делает инъекцию



Забор образцов крови


Нанотехнологии. Благодаря Интернету и развитию компьютерных технологий наше время можно смело назвать эпохой информационных технологий. Практически у каждого из нас есть мобильный телефон, по мощности порой превосходящий настольный компьютер. А всё благодаря тому, что размеры деталей в этих устройствах с каждым годом становятся всё меньше и меньше. И без химии здесь, понятное дело, не обошлось.

Каждая деталь электроники изготовлена из тех или иных материалов, и учёные всего мира ведут постоянный поиск всё новых и новых материалов (веществ, соединений), обладающих такими свойствами, которые позволили бы заменить уже существующие детали на превосходящие их по разным характеристикам: меньшие по размерам, с меньшим энергопотреблением, более дешёвые и т. д.

В ближайшие 5-10 лет (и это по самым пессимистичным прогнозам!) технологии виртуальной реальности войдут в нашу жизнь так же ощутимо, как это сделал в своё время Интернет. Тебе наверняка уже знакомы очки дополненной реальности, с помощью которых можно перенестись в виртуальный мир и играть в свои любимые игры с полным погружением в них. Повернул голову в реальном мире, а перед глазами повернулось пространство виртуального мира. Разве сравнить с той картинкой, которую приходится наблюдать на небольшом плоском мониторе?