Химия — просто — страница 22 из 24





Тем не менее на данный момент технологии виртуальной реальности есть несколько недостатков: слишком большой размер пикселя экрана, который используется в очках/шлемах виртуальной реальности, низкая производительность процессоров мобильных устройств и небольшой заряд батарей. Вообще ключевой вопрос данной технологии заключается в портативности. Шнур, тянущийся к очкам/шлему от стационарного компьютера, существенно ограничивает наши телодвижения, поэтому данный гаджет должен быть мобильным. Но тогда резко встаёт вопрос о его энергонезависимости, так ведь? Как долго сможет такой гаджет работать без подзарядки?

В настоящее время в разных научных лабораториях ведутся разработки экранов мобильных устройств с очень маленьким размером пикселя. Самый маленький пиксель (из известных на сегодняшний день) всё равно различим человеческим глазом при использовании VR-технологий (virtual reality), что создаёт пользователю определённый дискомфорт. Однако уже начались разработки по созданию экранов на основе модифицированного графена, позволяющего уменьшить пиксель до размера 10 атомов. Такой пиксель ни один человеческий глаз не разглядит. Просто фантастика!



Пиксельный кот



Аккумуляторы будущего



Аккумуляторы будущего


Процессоры компьютеров и мобильных устройств изготовлены из кристаллов кремния, который получают из обычного песка. От качества выращенного кристалла кремния зависят возможности и качество будущего процессора. Также некоторые научные лаборатории ведут работы над созданием более компактных процессоров на основе других материалов.

Ну и, конечно же, одна из самых насущных проблем — ёмкость аккумулятора. Естественно, хотелось бы, чтобы аккумулятор имел высокую ёмкость, быстро заряжался, был безопасным, не грелся при работе. Работы в этом направлении тоже ведутся различными научными лабораториями.

Энергетика. Стоило заговорить про аккумуляторы, как на ум сразу же пришли электромобили, над созданием которых сейчас работают крупные промышленные концерны. Как я уже сказал выше, хочется иметь аккумулятор высокой ёмкости и с возможностью быстрого заряда, и к электромобилям это имеет непосредственное отношение. Кому будет интересен электромобиль без аккумулятора, обладающего такими качествами? Вот представь, что на заправке потребуется заряжать авто в течение целого часа, а то и больше. Ну это же совсем никуда не годится! А ведь именно от ёмкости аккумулятора зависит, как далеко можно будет уехать на одном заряде.



Электромобиль



Энергия ветра как альтернатива солнечных электростанций



Аккумуляторы


Если же представить, что такому электрокару предстоит работать в российских зимних условиях при -40 °C, то к аккумулятору придётся предъявить ещё более жёсткие требования: он должен будет обладать способностью работать при низких температурах без ущерба для остальных его качеств. Замёрзнуть на трассе в суперсовременном электрокаре — сомнительное удовольствие, согласись.

Также, рассуждая об энергетике будущего, нельзя не упомянуть и об альтернативных источниках энергии. Например, о солнечных батареях. Не секрет, что к выработке электроэнергии такими устройствами предъявляются достаточно жёсткие требования. Поскольку коэффициент преобразования солнечного света в электричество ничтожно мал, для достижения его максимального показателя приходится держать солнечную батарею перпендикулярно солнечным лучам. Сами солнечные батареи очень дороги — из-за сложной технологии производства и дороговизны материалов, из которых они изготовлены. В настоящее время их используют обычно там, где строить полноценную электростанцию экономически нецелесообразно.

Об экологичности современных солнечных батарей говорить тоже особо не приходится. Из — за малого коэффициента преобразования солнечного света в электроэнергию приходится использовать большое количество солнечных панелей одновременно. Если ставить их просто на землю, то земельный участок придётся предварительно очистить от растительности. Если устанавливать на крыши домов, то в большом мегаполисе они будут малоэффективны, а в сельской местности — разорительны из-за высокой себестоимости.



Солнечные батареи



Солнечные батареи



Сверхпроводник


Для примера давай представим, что такие батареи кто — то решил установить у себя на даче или в загородном доме в России. Первая проблема, с которой столкнётся хозяин, — снег, много снега. Его необходимо будет регулярно убирать, а это, поверь, работа не из лёгких. К тому же ходить по солнечным панелям нельзя — во избежание их повреждения.

С учётом всех этих проблем учёные сейчас работают над созданием солнечных батарей, которые будут способны с небольшой площади вырабатывать достаточное количество электроэнергии и при этом иметь низкую цену.

Ещё одна актуальная тема, относящаяся к энергетике, — это сверхпроводники. Из курса школьной физики, да и из этой книги тоже, мы уже знаем, что проводник при пропускании через него электрического тока нагревается. Из — за сопротивления проводника происходят нежелательные энергопотери. И чем длиннее наш проводник, тем больше мы теряем электричества. А теперь представь, что все провода, которые подводят электричество к твоей домашней розетке, сделаны из сверхпроводников, то есть имеют нулевое сопротивление. Тогда всё, что выработала электростанция, дойдёт до твоей квартиры, не расходуясь на нагрев атмосферы воздуха.

Такие сверхпроводники существуют уже сейчас, просто пока они проявляют свои сверхпроводящие способности лишь при сверхнизких температурах (около 5-20 градусов по Кельвину), а дома у нас температура как минимум на 270 градусов выше. Поэтому учёные работают сейчас над созданием сверхпроводников, которые будут проявлять свойство сверхпроводимости при комнатной температуре и выше.

Материаловедение. Какие материалы в будущем нам могут понадобиться? Если мы полетим осваивать другие планеты, то для космических аппаратов явно потребуется такой материал, который будет лёгким, прочным и дешёвым. Лёгким, чтобы сам летательный аппарат был легковесным и для вывода на орбиту требовал меньше топлива. Прочным, чтобы он мог выдержать любые нагрузки, с которыми ему доведётся столкнуться в неведомых мирах. Дешёвым, чтобы полёты в космос стали доступны если не каждому человеку, то хотя бы большему числу людей, чем сейчас.

Сильные магниты. Сейчас самые сильные магниты изготавливают на основе соединения неодим — железо — бор. Неодим является редкоземельным элементом и имеет достаточно высокую цену. Учёные ведут поиск новых материалов, не уступающих по свойствам неодимовым магнитам, но при этом более дешёвых. В частности, такие исследования проводит российский учёный Артём Ромаевич Оганов в московском Сколтехе.

Говоря о новых материалах, нельзя обойти вниманием и такое направление, как ЭБ-печать. Представь, что ты сможешь скачать из Интернета модель автомобиля, а затем распечатать его. Или напечатать целый дом, самолёт, корабль… Да всё что угодно! Вспомнив о биотехнологиях, можно пофантазировать, что в больницах смогут научиться печатать донорские органы. Или, ещё лучше, распечатывать новое тело, в которое можно будет либо пересадить мозг, либо перенести своё сознание. Пока воплощение всех этих фантастических идей упирается в отсутствие материалов, необходимых как для печати, так и для изготовления самого SD-принтера. А раз всё дело в материалах, то без химиков здесь точно не обойтись.


Заключение

Конечно, в этой финальной главе можно было бы ещё раз вкратце пробежаться по этапам развития химии и подвести своеобразные итоги, но я посчитал такой ход банальным. К тому же я более чем уверен, что ты, мой дорогой читатель, уже обладаешь критическим мышлением и сам способен сделать нужные выводы и подвести итог прочитанному. Поэтому на прощание я решил поделиться с тобой некоторыми интересными фактами из истории химии.

Несовершённое открытие. Британский физик-химик Генри Кавендиш, наиболее продуктивные работы которого относятся к периоду 1770–1790 годов, первым открыл состав воды, определив, что она состоит из водорода и кислорода. Вычислив с большой точностью соотношение в воздухе газообразных водорода и кислорода, он показал, что, вступая в реакцию, они образуют воду. Также Кавендиш пытался доказать, что азот — простое вещество, а не смесь. Для этого он пропускал электрическую искру через смесь азота — неактивной части воздуха и кислорода. Оказалось, что при этой реакции исчезал весь азот и оставалась всего од на сто двадцать пятая часть всей смеси. При тогдашнем уровне науки и несовершенстве технических приспособлений Кавендиш едва ли мог соотнести этот неактивный остаток с аргоном — газом, который будет открыт лишь 100 лет спустя. А всё потому, что спектроскоп — важнейший прибор для различия и характеристики элементов — ещё не был изобретён.

Перед нами — наглядный пример того, как открытию, чтобы оно могло состояться и быть признанным в учёном мире, приходится порой ждать изобретения средств, необходимых для его подтверждения.

Внезапная смерть. В дождливый день 19 апреля 1906 года, переходя улицу в Париже, он поскользнулся и упал. Голова его попала под колесо проезжавшего мимо конного экипажа. Смерть наступила мгновенно. Несчастным оказался знаменитый французский учёный — физик, один из первых исследователей радиоактивности, член Французской Академии наук, лауреат Нобелевской премии по физике за 1903 год Пьер Кюри. Муж Марии Склодовской-Кюри.

Учёные шутят. В 1726 году немецкий врач Иоганн Берингер обнаружил при раскопках окаменелости ящериц, пауков и птиц, на которых на иврите было начертано имя бога. Он опубликовал научный труд на эту тему и даже выдвинул гипотезу, что письмена на камнях выполнены самим богом. Но на самом деле эти окаменелости были изготовлены из обычного известняка и сейчас известны всем как «Ложные камни».