9. Sancho, L. G. et al. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7, 443–454, doi:10.1089/ast.2006.0046 (2007).
10. Rundel, P. W. The ecological role of secondary lichen substances. Biochemical Systematics and Ecology 6, 157–170, doi:https://doi.org/10.1016/0305–1978 (78) 90002–9 (1978).
11. Nash, T. H. Lichen Biology (Cambridge University Press, 1996).
12. Delwiche, C. F. & Cooper, E. D. The Evolutionary Origin of a Terrestrial Flora. Curr Biol 25, R899–910, doi:10.1016/j.cub.2015.08.029 (2015).
13. Kroken, S. B., Graham, L. E. & Cook, M. E. Occurrence and Evolutionary Significance of Resistant Cell Walls in Charophytes and Bryophytes. American Journal of Botany 83, 1241–1254, doi:10.2307/2446108 (1996).
14. Males, J. & Griffiths, H. Stomatal Biology of CAM Plants. Plant Physiol 174, 550–560, doi:10.1104/pp.17.00114 (2017).
15. Lewis, L. A. & McCourt, R. M. Green algae and the origin of land plants. Am J Bot 91, 1535–1556, doi:10.3732/ajb.91.10.1535 (2004).
16. Field, K. J., Pressel, S., Duckett, J. G., Rimington, W. R. & Bidartondo, M. I. Symbiotic options for the conquest of land. Trends Ecol Evol 30, 477–486, doi:10.1016/j.tree.2015.05.007 (2015).
17. Brundrett, M. in Advances in Ecological Research Vol. 21 (eds M. Begon, A. H. Fitter, & A. Macfadyen) 171–313 (Academic Press, 1991).
18. Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304, doi:10.1046/j.1469–8137.2002.00397.x (2002).
19. Harrison, C. J. & Morris, J. L. The origin and early evolution of vascular plant shoots and leaves. Philos Trans R Soc Lond B Biol Sci 373, doi:10.1098/rstb.2016.0496 (2018).
20. Beerling, D. J. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years? Philos Trans R Soc Lond B Biol Sci 367, 477–482, doi:10.1098/rstb.2011.0276 (2012).
21. Dorrell, R. G. & Smith, A. G. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10, 856–868, doi:10.1128/EC.00326–10 (2011).
22. Caldwell, J. P., Thorp, J. H. & Jervey, T. O. Predator-prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46, 285–289, doi:10.1007/BF00346253 (1980).
23. Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23, 392–398, doi:10.1016/j.cub.2013.01.026 (2013).
24. Linares, A. M., Maciel-Júnior, J. A. H., Espírito Santo De Mello, H. & Sá Fortes Leite, F. First report on predation of adult anurans by Odonata larvae. Salamandra 52, 42–44 (2016).
25. McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biological Reviews 57, 29–58, doi:10.1111/j.1469-185X.1982.tb00363.x (1982).
26. Ridpath, M. G. Predation on frogs and small birds by Hierodula werneri (Giglio-Tos) (Mantidae) in tropical Australia.. Australian Journal of Entomology 16, 153–154, doi:10.1111/j.1440–6055.1977.tb00077.x (1977).
27. Molinari, J. et al. Predation by giant centipedes, Scolopendra gigantea, on three species of bats in a Venezuelan cave. Caribbean Journal of Science 41, 340–346 (2005).
28. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).
29. Telford, M. J., Bourlat, S. J., Economou, A., Papillon, D. & Rota-Stabelli, O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 363, 1529–1537, doi:10.1098/rstb.2007.2243 (2008).
30. Verberk, W. C. & Bilton, D. T. Can oxygen set thermal limits in an insect and drive gigantism? PLoS One 6, e22610, doi:10.1371/journal.pone.0022610 (2011).
31. Clapham, M. E. & Karr, J. A. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci USA 109, 10927–10930, doi:10.1073/pnas.1204026109 (2012).
32. Pittman, R. N. in Regulation of Tissue Oxygenation Ch. 4 (Morgan & Claypool Life Sciences, 2011).
1. Alexander, R. M. Dinosaur biomechanics. Proc Biol Sci 273, 1849–1855, doi:10.1098/rspb.2006.3532 (2006).
2. Choo, B. Jurassic art: how our vision of dinosaurs has evolved over time,
3. Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The Early Origin of Feathers. Trends Ecol Evol 34, 856–869, doi:10.1016/j.tree.2019.04.018 (2019).
4. Quain, J. R. What Did T. Rex Look Like? A New Exhibit Has the 'Ultimate Predator' in Feathers,
5. Laurin, M. a. G., J. A. Diapsida. Lizards, Sphenodon, crocodylians, birds, and their extinct relatives,
6. Colbert, E. H. The Age of Reptiles (Dover Publications, 2012).
7. Carroll, R. L. The origin and early radiation of terrestrial vertebrates. Journal of Paleontology 75, 1202–1213, doi:10.1017/S0022336000017248 (2001).
8. Peyser, C. E. & Poulsen, C. J. Controls on Permo-Carboniferous precipitation over tropical Pangaea: A GCM sensitivity study. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 181–192, doi:https://doi.org/10.1016/j.palaeo.2008.03.048 (2008).
9. Dunne, E. M. et al. Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'. Proc Biol Sci 285, doi:10.1098/rspb.2017.2730 (2018).
10. Rubidge, B. S. & Sidor, C. A. Evolutionary Patterns among Permo-Triassic Therapsids. Annual Review of Ecology and Systematics 32, 449–480 (2001).
11. DeMar, R. & Barghusen, H. R. Mechanis and the Evolution of the Synapsid Jaw. Evolution 26, 622–637, doi:10.2307/2407058 (1972).
12. Van Valkenburgh, B. & Jenkins, I. Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators. The Paleontological Society Papers 8, 267–288, doi:10.1017/S1089332600001121 (2002).
13. Sumida, S. & Martin, K. L. M. Amniote Origins: Completing the Transition to Land (Elsevier Science, 1997).
14. Espinoza, R. E., Wiens, J. J. & Tracy, C. R. Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. Proc Natl Acad Sci USA 101, 16819–16824, doi:10.1073/pnas.0401226101 (2004).
15. Sjostrom, E. Wood Chemistry: Fundamentals and Applications (Elsevier Science, 1993).
16. Smant, G. et al. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95, 4906–4911, doi:10.1073/pnas.95.9.4906 (1998).
17. Watanabe, H. & Tokuda, G. Animal cellulases. Cell Mol Life Sci 58, 1167–1178, doi:10.1007/PL00000931 (2001).
18. Lo, N., Watanabe, H. & Sugimura, M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc Biol Sci 270 Suppl 1, S69–72, doi:10.1098/rsbl.2003.0016 (2003).
19. Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian – Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters 214, 75–91, doi:https://doi.org/10.1016/S0012-821X (03) 00347–9 (2003).
20. Renne, P. R. & Basu, A. R. Rapid eruption of the siberian traps flood basalts at the permo-triassic boundary. Science 253, 176–179, doi:10.1126/science.253.5016.176 (1991).
21. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372, doi:10.1126/science.1213454 (2011).
22. Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232, doi:10.1126/science.aaa0193 (2015).
23. Erwin, D. H. The Permo – Triassic extinction. Nature 367, 231–236, doi:10.1038/367231a0 (1994).
24. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA 111, 5462–5467, doi:10.1073/pnas.1318106111 (2014).
25. Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302, 1388–1392, doi:10.1126/science.1090852 (2003).
26. Becker, L. et al. Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304, 1469–1476, doi:10.1126/science.1093925 (2004).
27. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochimica et Cosmochimica Acta 69, 3211–3217, doi:https://doi.org/10.1016/j.gca.2005.03.021 (2005).
28. Floudas, D. et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719, doi:10.1126/science.1221748 (2012).
29. Gurewitsch, M. True Colors,
30. Talabot, M. The Myth of Whiteness in Classical Sculpture. The New Yorker (2018).
31. Conway, J., Kosemen, C. M., Naish, D. & Hartman, S. All Yesterdays: Unique and Speculative Views of Dinosaurs and Other Prehistoric Animals (Irregular Books, 2013).
32. Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr Biol 14, R9–10, doi:10.1016/j.cub.2003.12.012 (2004).
33. Shapiro, B. Mammoth 2.0: will genome engineering resurrect extinct species?