Genome Biol 16, 228, doi:10.1186/s13059-015-0800-4 (2015).
34. Black, R. You say «Velociraptor,» I say «Deinonychus»,
35. Vinther, J. The True Colors of Dinosaurs. Sci Am 316, 50–57, doi:10.1038/scientificamerican0317–50 (2017).
36. Brett-Surman, M. K., Holtz, T. R. & Farlow, J. O. The Complete Dinosaur (Indiana University Press, 2012).
37. Amiot, R. et al. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters 246, 41–54, doi:https://doi.org/10.1016/j.epsl.2006.04.018 (2006).
38. Varricchio, D. J. et al. Avian paternal care had dinosaur origin. Science 322, 1826–1828, doi:10.1126/science.1163245 (2008).
39. Meng, Q., Liu, J., Varricchio, D. J., Huang, T. & Gao, C. Palaeontology: parental care in an ornithischian dinosaur. Nature 431, 145–146, doi:10.1038/431145a (2004).
40. Hearn, L. & Williams, A. C. C. Pain in dinosaurs: what is the evidence? Philos Trans R Soc Lond B Biol Sci 374, 20190370, doi:10.1098/rstb.2019.0370 (2019).
41. Horner, J. R. The Nesting Behavior of Dinosaurs. Scientific American 250, 130–137 (1984).
42. Riede, T., Eliason, C. M., Miller, E. H., Goller, F. & Clarke, J. A. Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds. Evolution 70, 1734–1746, doi:10.1111/evo.12988 (2016).
43. Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708, doi:10.1038/35047056 (2000).
44. Pan, Y. et al. The molecular evolution of feathers with direct evidence from fossils. Proc Natl Acad Sci USA 116, 3018–3023, doi:10.1073/pnas.1815703116 (2019).
45. Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc Natl Acad Sci USA 110, 20657–20662, doi:10.1073/pnas.1310711110 (2013).
46. Ostrom, J. H. Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society 8, 91–182, doi:10.1111/j.1095–8312.1976.tb00244.x (2008).
47. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc Natl Acad Sci USA 115, 6506–6511, doi:10.1073/pnas.1711842115 (2018).
48. Newitz, A. Lystrosaurus: The Most Humble Badass of the Triassic,
49. Botha, J. & Smith, R. M. H. Lystrosaurus species composition across the Permo-Triassic boundary in the Karoo Basin of South Africa. Lethaia 40, 125–137, doi:10.1111/j.1502–3931.2007.00011.x (2007).
50. Botha-Brink, J. Burrowing in Lystrosaurus: preadaptation to a postextinction environment? Journal of Vertebrate Paleontology 37, e1365080, doi:10.1080/02724634.2017.1365080 (2017).
51. Botha-Brink, J., Codron, D., Huttenlocker, A. K., Angielczyk, K. D. & Ruta, M. Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction. Sci Rep 6, 24053, doi:10.1038/srep24053 (2016).
52. Huttenlocker, A. K. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS One 9, e87553, doi:10.1371/journal.pone.0087553 (2014).
53. Abdala, F. Galesaurid cynodonts from the Early Triassic of South Africa: Another example of conflicting distribution of characters in non-mammalian cynodonts. South African Journal of Science 99, 95–96 (2003).
54. Schmidt-Nielsen, K. & Randall, D. J. Animal Physiology: Adaptation and Environment (Cambridge University Press, 1997).
55. Tucker, V. A. Respiratory Physiology of House Sparrows in Relation to High-Altitude Flight. Journal of Experimental Biology 48, 55 (1968).
56. Farmer, C. G. The Evolution of Unidirectional Pulmonary Airflow. Physiology (Bethesda) 30, 260–272, doi:10.1152/physiol.00056.2014 (2015).
57. Farmer, C. G. & Sanders, K. Unidirectional airflow in the lungs of alligators. Science 327, 338–340, doi:10.1126/science.1180219 (2010).
58. Schachner, E. R., Cieri, R. L., Butler, J. P. & Farmer, C. G. Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 506, 367–370, doi:10.1038/nature12871 (2014).
59. Cieri, R. L., Craven, B. A., Schachner, E. R. & Farmer, C. G. New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci USA 111, 17218–17223, doi:10.1073/pnas.1405088111 (2014).
60. Farmer, C. G. Similarity of Crocodilian and Avian Lungs Indicates Unidirectional Flow Is Ancestral for Archosaurs. Integr Comp Biol 55, 962–971, doi:10.1093/icb/icv078 (2015).
61. Erickson, G. M., Rogers, K. C. & Yerby, S. A. Dinosaurian growth patterns and rapid avian growth rates. Nature 412, 429–433, doi:10.1038/35086558 (2001).
62. Gerkema, M. P., Davies, W. I., Foster, R. G., Menaker, M. & Hut, R. A. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 280, 20130508, doi:10.1098/rspb.2013.0508 (2013).
63. Charles-Dominique, P. in Phylogeny of the Primates: A Multidisciplinary Approach (eds W. Patrick Luckett & Frederick S. Szalay) 69–88 (Springer US, 1975).
64. Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav Evol 75, 195–203, doi:10.1159/000314278 (2010).
65. Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122, doi:10.1666/0094–8373 (2003) 029<0105: DBTTOO>2.0. CO; 2 (2003).
66. Benton, M. J. Ectothermy and the Success of Dinosaurs. Evolution 33, 983–997, doi:10.2307/2407661 (1979).
67. Hillenius, W. J. Turbinates in Therapsids: Evidence for Late Permian Origins of Mammalian Endothermy. Evolution 48, 207–229, doi:10.1111/j.1558–5646.1994.tb01308.x (1994).
68. McNab, B. K. The Evolution of Endothermy in the Phylogeny of Mammals. The American Naturalist 112, 1–21, doi:10.1086/283249 (1978).
69. Bennett, A. F. & Ruben, J. A. Endothermy and activity in vertebrates. Science 206, 649–654, doi:10.1126/science.493968 (1979).
70. Edelman, I. S. Transition from the polikilotherm to the homeotherm: possible role of sodium transport and thyroid hormone. Fed Proc 35, 2180–2184 (1976).
71. Else, P. L., Windmill, D. J. & Markus, V. Molecular activity of sodium pumps in endotherms and ectotherms. Am J Physiol 271, R1287–1294, doi:10.1152/ajpregu.1996.271.5. R1287 (1996).
72. Hughes, D. A., Jastroch, M., Stoneking, M. & Klingenspor, M. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol Biol 9, 4, doi:10.1186/1471-2148-9-4 (2009).
73. Virtanen, K. A. BAT thermogenesis: Linking shivering to exercise. Cell Metab 19, 352–354, doi:10.1016/j.cmet.2014.02.013 (2014).
74. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19, 302–309, doi:10.1016/j.cmet.2013.12.017 (2014).
75. Zhang, W. et al. Irisin: A myokine with locomotor activity. Neurosci Lett 595, 7–11, doi:10.1016/j.neulet.2015.03.069 (2015).
76. Xiong, X. Q. et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta 1852, 1867–1875, doi:10.1016/j.bbadis.2015.06.017 (2015).
77. Kring, D. et al. Chicxulub and the Exploration of Large Peak-Ring Impact Craters through Scientific Drilling. GSA Today 27, doi:10.1130/GSATG352A.1 (2017).
78. Morgan, J. V. et al. The formation of peak rings in large impact craters. Science 354, 878–882, doi:10.1126/science.aah6561 (2016).
79. Ohno, S. et al. Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nature Geoscience 7, 279–282, doi:10.1038/ngeo2095 (2014).
80. Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the Cenozoic. GSA Bulletin 116, 760–768, doi:10.1130/B25402.1 (2004).
81. Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth and Planetary Science Letters 128, 719–725, doi:https://doi.org/10.1016/0012-821X (94) 90186–4 (1994).
82. Belcher, C. M. Reigniting the Cretaceous-Palaeogene firestorm debate. Geology 37, 1147–1148, doi:10.1130/focus122009.1 (2009).
83. Farmer, C. G. Parental Care: The Key to Understanding Endothermy and Other Convergent Features in Birds and Mammals. Am Nat 155, 326–334, doi:10.1086/303323 (2000).
84. Grigg, G. C., Beard, L. A. & Augee, M. L. The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77, 982–997, doi:10.1086/425188 (2004).
1. Ben-Ami Bartal, I., Decety, J. & Mason, P. Empathy and pro-social behavior in rats. Science 334, 1427–1430, doi:10.1126/science.1210789 (2011).
2. Wechkin, S., Masserman, J. H. & Terris, W. Shock to a conspecific as an aversive stimulus. Psychonomic Science 1, 47–48, doi:10.3758/BF03342783 (1964).
3. Esaias, W. E. & Curl Jr, H. C. Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnology and Oceanography 17, 901–906, doi:10.4319/lo.1972.17.6.0901 (1972).