Это было близко к революционному выводу, сделанному Карно на основе сравнения паровой машины с водяной мельницей, — выводу о том, что количество работы, производимое при заданном тепловом потоке в идеальном двигателе, определяется только разницей температур между нагревателем и охладителем. (Подробнее см. в Приложении 2.)
Но всегда ли это было так? Могли ли другие вещества иначе разделять теплоту на полезную и отработанную? Представьте воздушный двигатель и паровую машину, функционирующие с использованием одних и тех же нагревателя и охладителя. Может ли воздушный двигатель производить больше работы на этапе расширения или расходовать меньше работы на этапе сжатия, чем паровая машина?
Чтобы ответить на этот вопрос, Клаузиусу пришлось открыть новый закон физики.
Он начал с мысленного эксперимента, вдохновленного идеями Карно. Клаузиус вообразил идеальный обратный двигатель. Работа прикладывается к такому устройству и перекачивает теплоту из холодной зоны в горячую — иными словами, из нагревателя в охладитель. Это напоминает принцип действия современного холодильника, который перемещает теплоту изнутри наружу — в комнату, где он стоит. Но не забывайте о законе сохранения энергии. Работа, приложенная к холодильнику, должна куда-то уходить, и она преобразуется в теплоту — в противоположность двигателю, где часть поступающей теплоты преобразуется в работу. Поднесите руку к задней стенке холодильника, и вы ощутите тепло, которое представляет собой совокупность теплоты, выходящей из холодильника, и теплоты, производимой насосом.
Клаузиус представил идеальный двигатель и холодильник, которые работают с одними и теми же нагревателем и охладителем.
Он предусмотрел, что работа, производимая идеальным двигателем, обеспечивает функционирование идеального холодильника.
Идеальный двигатель Клаузиуса обеспечивает функционирование идеального холодильника
Для наглядности представим, что идеальный двигатель получает из нагревателя 100 калорий, преобразует половину в работу, а оставшиеся 50 калорий сбрасывает в охладитель.
Идеальный холодильник получает эквивалентную 50 калориям работу от идеального двигателя, всасывает 50 калорий из охладителя и перекачивает 100 калорий в нагреватель.
Такая конструкция будет работать вечно. Вся теплота, сбрасываемая в охладитель, будет подниматься обратно. Но полезной работы производиться не будет.
Сверхидеальный двигатель обеспечивает функционирование идеального холодильника
Далее Клаузиус представил сверхидеальный двигатель, который делит получаемую теплоту на работу и отработанную теплоту более выгодно, чем идеальный. Он работает не по принципу 50:50, а по принципу 50:30. Такая машина получает 80 калорий теплоты из нагревателя, преобразует 50 из них в работу и сбрасывает оставшиеся 30 в охладитель.
Далее представим, что сверхидеальный двигатель обеспечивает функционирование идеального холодильника.
Восемьдесят калорий поступают из нагревателя в сверхидеальный двигатель. 50 из них преобразуются в работу, а 30 сбрасываются в охладитель.
Идеальный холодильник использует работу, полученную из сверхидеального двигателя, чтобы высосать 50 калорий из охладителя. Затем он поднимает в общей сложности 100 калорий обратно в нагреватель.
В этом ключ ко всему. Закон сохранения энергии не нарушается ни на одном из этапов. Сумма теплоты и работы остается постоянной. Но происходит нечто странное.
Нагреватель отдает 80 калорий теплоты сверхидеальному двигателю, но получает 100 калорий от идеального “обратного” двигателя, обеспечивая чистый прирост в 20 калорий.
Тем временем охладитель получает 30 калорий от сверхидеального двигателя, но отдает 50 калорий идеальному обратному двигателю, обеспечивая чистый убыток на (50–30) = = 20 калорий.
Получается, что 20 калорий теплоты перемещаются из холодной зоны (охладителя) в горячую (нагреватель), но при этом работа не поступает в систему извне. Такая конструкция предполагает существование холодильника, способного функционировать без энергозатрат.
Такого быть не может. Теплота никогда не перемещается из холодной зоны в горячую, не подвергаясь воздействию силы, то есть не расходуя некоторое количество работы. Самопроизвольное естественное перемещение теплоты всегда происходит в обратную сторону, из горячей зоны в холодную. Существование сверхидеального двигателя невозможно, поскольку оно предполагает нарушение этого закона.
Итак, Клаузиус подтвердил догадки Карно. Француз сделал верный вывод, что максимальное количество работы, которое можно получить при заданном количестве теплоты, определяется температурой нагревателя и охладителя. Оно не зависит от рабочего вещества и конструкции двигателя.
Гипотеза Карно также находит подтверждение, если принять и закон сохранения энергии, и принцип, в соответствии с которым теплота никогда самопроизвольно не перемещается из холодной зоны в горячую.
Таким образом, в своей статье Клаузиус сделал важнейший вывод, что поведение теплоты определяется двумя принципами, которые сегодня называются первыми двумя началами термодинамики. Они таковы.
Первое начало: хотя теплоту и работу можно преобразовывать друг в друга при постоянном “обменном курсе”, открытом Джоулем, общее количество теплоты и работы остается неизменным. (Это закон сохранения энергии в применении к теплоте и работе.)
Второе начало: теплота никогда самопроизвольно не перетекает от холодного к горячему.
Формулировка двух этих утверждений ознаменовала рождение новой области науки.
* * *
Статью Клаузиуса приняли хорошо. После публикации его назначили профессором физики Королевской артиллерийской и инженерной школы в Берлине. Через несколько недель статья была переведена на английский язык. Летом 1850 года, читая ее в Глазго, Томсон, должно быть, испытывал смешанные чувства. С одной стороны, Клаузиус признавал роль Томсона в привлечении внимания научного сообщества к идеям Карно и Джоуля. С другой стороны, загадку, над которой Томсон бился два года, решил другой человек. Несколько месяцев спустя Томсон опубликовал собственный вывод второго начала Клаузиуса.
Хотя Клаузиус и Томсон никогда не встречались, печатаясь в научных журналах, они в некотором роде вместе работали над установлением природы теплоты, закладывая прочный фундамент для новой науки. Они вместе проложили путь к тому, чтобы показать, что термодинамика имеет применение не только в паровых машинах.
Первым и одним из самых важных шагов в этом направлении стала статья Томсона, опубликованная в апреле 1852 года. Как и Джоуль, Томсон видел в поведении теплоты руку Творца. В первом начале термодинамики, законе сохранения энергии, Джоуль упомянул о “великих силах природы”. Во втором начале Томсон разглядел Божий план для судьбы космоса.
Стоит рассказать, в каких условиях Томсон работал над этой статьей.
Хотя Глазго стремительно развивался на фоне промышленного подъема, страданий тоже было немало. Великий голод в Ирландии привел в город почти 100 тысяч нищих беженцев. Из-за голода, антисанитарии и примитивного уровня здравоохранения начались эпидемии. От болезни не был застрахован никто. В начале 1847 года младший брат Томсона Джон заразился тифом в больнице, где изучал медицину, и умер неделю спустя. За тифом последовала холера, и не прошло и двух лет, как ее жертвой пал отец Томсона, который вошел в число более 4000 горожан, умерших от болезни в тот год. Вскоре после второй утраты молодая Сабрина Смит ответила на предложение Томсона отказом.
Чувствуя себя несчастным и отвергнутым, Томсон в 1852 году написал статью “О проявляющейся в природе общей тенденции к рассеянию механической энергии”. Теперь он явно думал не только о паровых машинах.
Четырьмя годами ранее в статье о Карно Томсон рассуждал о том, что происходит с железным стержнем, раскаленным докрасна с одной стороны и холодным с другой. Теплота перемещается от горячего конца к холодному, пока температура стержня не выравняется. Томсон спрашивал, что происходит с работой, которую такой же тепловой поток мог бы произвести в паровой машине?
Теперь, в 1852 году, Томсон нашел ответ. Начальная разница температур между разными концами стержня не преобразуется в работу, а просто “рассеивается”. Она бесполезна. Томсон подчеркнул, что по закону сохранения энергии теплота не уничтожается, но в процессе перераспределения, переставая быть сосредоточенной в одном конце стержня, она теряет потенциал для выполнения работы.
Следовательно, железный стержень, температура которого постепенно выравнивается, можно считать тепловым двигателем с нулевой эффективностью. В идеальном двигателе часть теплоты преобразуется в работу, а другая часть рассеивается. В железном стержне рассеивается вся теплота. В обоих случаях потерянную теплоту невозможно использовать для производства работы.
Если природа не терпит пустоты, то теплота не терпит вариаций. Теплота всегда стремится рассеяться и выравнять разницу температур. Хотя в процессе этого можно получить некоторое количество работы, любое такое приобретение, по утверждению Томсона, будет временным. Получаемая работа в конце концов тоже становится рассеянной теплотой. Это происходит под действием неизбежно возникающей силы трения, например при трении колес о поверхность дороги или трении воды о корпус корабля. Хуже того, этот процесс необратим. Природа позволяет преобразование работы в рассеянную теплоту. Но не допускает обратного.
В своей статье Томсон привлек внимание к идее, которая в середине XIX века была для физики в новинку, — идее о необратимости. В работе Ньютона такой концепции не было — его законы обратимы. Скажем, человек выбрасывает мяч известной массы из окна, находящегося на известной высоте. Применяя законы Ньютона, другой человек, стоящий на земле, может рассчитать скорость, с которой мяч движется вниз прямо перед столкновением с землей. Затем этот человек бросает мяч обратно с той же скоростью. Мяч возвращается к первому человеку. Но при трении колеса о дорогу ситуация обстоит совсем иначе. Часть механической энергии колеса преобразуется в теплоту посредством трения. Согласно Томсону, получаемую при трении теплоту невозможно собрать и вернуть колесу.