Хозяин самолета — страница 6 из 22


А теперь рассмотрим еще один характерный пример.

Большим преимуществом турбореактивного двигателя перед двигателем поршневым является то, что турбореактивный двигатель не нуждается в специальном подогреве перед запуском даже в зимнее время (до температуры порядка минус 10° C, а некоторые двигатели и при более низкой температуре). Кроме того, для прогрева турбореактивного двигателя после запуска требуется очень мало времени.

На рис. 7 показан примерный график прогрева и пробы одного из турбореактивных двигателей. Мы видим, что для прогрева этого двигателя от момента включения кнопки запуска до перехода на режимы, на которых производится проверка агрегатов, требуется примерно 2,5–3 минуты летом и 4–5 минут зимой (на поршневых двигателях на это затрачивается 5–8 минут летом и 7–12 минут зимой).

Рис. 7. Примерный график прогрева и пробы одного из турбореактивных двигателей: а — летом; б — зимой

Следует заметить, что некоторые турбореактивные двигатели прекрасно (без перебоев) переходят на повышенные режимы сразу же после запуска. Поэтому в одной из авиационных частей некоторые авиационные механики (техники) иногда, пренебрегая рекомендациями, изложенными в инструкциях по эксплуатации двигателя, так и делали. В частности, был у нас такой техник самолета Носов, который рассуждал так: «Двигатель прекрасно переходит на повышенные режимы без прогрева. Если бы это был двигатель поршневой, тогда другое дело, — прогрев его необходим для обеспечения нормальных условий смазки. А здесь? Маслосистема закрытая, прогревается моментально, масло трансформаторное, имеющее невысокую вязкость. Зачем же его прогревать?»

И Носов, решив представить инженеру части обоснованные предложения по изменению графика прогрева и пробы двигателей, решил постепенно сокращать время прогрева двигателя на малых оборотах. А надо заметить, начал он это делать еще летом.

К началу зимы Носов уже «научился» пробовать двигатели на своем самолете за пять минут, тогда как на других самолетах время прогрева и пробы с наступлением холодов увеличили до восьми — десяти минут. О своих экспериментах Носов уже готовился доложить инженеру части, но тут его неожиданно постигла неудача.

В один из зимних дней (температура в этот день упала до минус 20° C) Носов при подготовке самолета к полету повторил свой «эксперимент». Он без предварительного подогрева (в инструкции этого не требовалось, но некоторые механики это делали, когда температура воздуха падала ниже -15° C) легко запустил двигатель и сразу же без прогрева на малых оборотах перевел его на большие обороты. Двигатель работал на слух безукоризненно. Только температура масла росла несколько медленнее обычного. Но за масло Носов не беспокоился — трансформаторное масло даже при температуре -20° C обладает невысокой вязкостью и, следовательно, нормальная его циркуляция в системе смазки двигателя обеспечивалась. Поэтому Носов спокойно опробовал двигатель на повышенных оборотах и даже раньше, чем обычно, перешел к пробе на взлетном режиме. Но тут он вдруг услышал в двигателе какой-то посторонний шум, потом скрежет; самолет сильно качнуло и… наступила тишина. Носов понял: заклинило ротор двигателя.

Когда выяснили причину заклинения, оказалось, что на двигателе разрушился задний шариковый подшипник ротора.

Долго инженеры искали причину преждевременного выхода двигателя из строя. С завода прибыл для этого специальный представитель, но найти достоверную причину так и не удалось до тех пор, пока Носов сам не рассказал старшему инженеру части о своих «экспериментах» с запуском.

— Как же вы до этого додумались? — спросил старший инженер части.

— Да я делал все по инструкции, товарищ инженер, — начал оправдываться Носов. — Только время прогрева уменьшил. Но остальное все нормально… И запускался двигатель хорошо, смазка обеспечивалась — точно говорю!.. Ума не приложу, как это могло случиться? Не понимаю… Как влияет прогрев на работу турбореактивного двигателя?.. Расскажите, товарищ инженер.

— Вот об этом вам следовало бы спросить прежде, чем заниматься своими безграмотными экспериментами, — ответил инженер. — Вам уже давно следовало бы знать, что прогрев авиационного двигателя необходим не только для нормальной циркуляции масла, но и для обеспечения нормального прогрева его деталей и особенно подшипников… Для многооборотных турбореактивных двигателей это тем более важно. Вы переводили двигатель на повышенные режимы работы без нормального прогрева их на малых оборотах. До сих пор это обходилось без отказов потому, что летом перепад между температурой работающего двигателя и температурой наружного воздуха значительно меньше, чем зимой. Зимой же этот перепад велик. Но увеличение перепада между температурой двигателя и температурой воздуха в свою очередь влияет на изменение перепада между температурами внутренних деталей двигателя, увеличивая его. Так, с понижением температуры наружного воздуха, а следовательно, и температуры масла в двигателе и его деталей увеличивается перепад между температурой наружных и температурой внутренних обойм шариковых и роликовых подшипников. При этом уменьшаются конструктивные зазоры между шариками (роликами) и обоймами. Когда эти зазоры уменьшаются до нуля, происходит разрушение подшипника, что и случилось на вашем самолете.

— А я и не знал, — начал было Носов.

— И я об этом говорю, — перебил его инженер, — не знаете, не экспериментируйте! Вы хозяин самолета, на вашей ответственности такая сложная машина… Но вместо того чтобы совершенствовать свои знания, вы до сих пор живете школьным багажом. Это никогда к хорошему не приводит. Нужно учиться и почаще спрашивать о том, что не в силах осилить самостоятельно.


Сейчас, когда я закончил описание этого случая, мне пришел на память другой пример. Этот пример, правда, небольшой, но в некотором отношении он характерен. Он убеждает нас в том, что при изучении инструкции по эксплуатации самолета или отдельных его агрегатов авиационному механику (технику) недостаточно познакомиться только с устройством и работой того или иного агрегата. Для грамотной его эксплуатации необходимо также знать материалы, из которых изготовлен данный агрегат, и свойства этих материалов.

Известно, что на многих высотных самолетах для поглощения влаги из межстекольного пространства (при двойном остеклении) герметических кабин применяются специальные регенерационные патроны. В качестве поглотителя в таких патронах используется силикагель. Силикагель — это зернистый материал, обладающий очень высокой гигроскопичностью и хорошо впитывающий в себя влагу. Но с течением времени он насыщается и теряет способность впитывать влагу. Для восстановления поглощающей способности силикагеля производят сушку регенерационных патронов в специальных сушильных шкафах.

Однажды на одном из самолетов летчик, вернувшись с задания, заявил авиационному механику старшему сержанту Селихову, что в кабине сильно пахнет керосином. «Невозможно работать, — сказал он. — Голова болит».

Авиационный механик Селихов проверил все каналы, откуда мог поступить керосин в кабину, но ничего подозрительного не нашел. А между тем в кабине и с открытым входным люком устойчиво держался запах керосина. Дня два возился Селихов на самолете в поисках источника этого запаха, но так ничего и не обнаружив, обратился за помощью к инженеру.

— А какие работы вы выполняли на самолете перед этим вылетом? — спросил его инженер.

Селихов, перечисляя выполненные им накануне полетов работы, упомянул и сушку силикагелевых регенерационных патронов.

— Снимите-ка эти патроны, — приказал инженер. И когда Селихов выполнил это приказание и принес ему регенерационные патроны, сказал: — А теперь понюхайте их.

Селихов понюхал и удивился: регенерационные патроны сильно пахли керосином.

— Как же так? — сказал он. — Когда я их снимал в прошлый раз, от них керосином не пахло… И потом, — он смутился, — как вы об этом узнали, товарищ инженер? Ведь вы даже не понюхали их.

— Очень просто, — ответил инженер. — Когда вы сказали, что в день предполетной подготовки снимали для промывки и просушки топливный фильтр и одновременно силикагелевые регенерационные патроны, я догадался, что вы сушили их в одном сушильном шкафу и, очевидно, даже вместе.

— Точно! — еще более удивился Селихов. — Как же вы догадались? Я же не докладывал, что сушил их вместе…

— А нужно было бы доложить, — строго сказал инженер. — Вы не один у меня, и я не имею возможности контролировать каждый ваш шаг. Однако, как же это вы, товарищ Селихов, больше года уже обслуживаете этот самолет и до сих пор не знаете, что силикагель гигроскопичен? Ведь силикагель впитывает не только пары воды, но и пары других жидкостей. При сушке регенерационных патронов в сушильном шкафу вместе с топливными фильтрами вы освобождали силикагель от паров воды, но насыщали его парами керосина… Такие простые истины знать надо, товарищ Селихов! Ведь вы же хозяин самолета… Для того чтобы вывернуть и завернуть регенерационный патрон, больших знаний не требуется, но вам-то их не только монтировать, но еще и эксплуатировать нужно!

Мне кажется, приведенных примеров вполне достаточно для того, чтобы понять, как важно для авиационного механика (техника) самолета систематически пополнять свои знания и совершенствоваться по специальности.

Высококвалифицированный, технически грамотный авиационный механик (техник) не только не допустит преждевременного выхода из строя самолета по причинам, в какой-то мере от него зависящим, но правильным подходом к обслуживанию самолета всегда способствует увеличению срока его службы и надежности в эксплуатации.

В авиационных частях нередки случаи, когда технически грамотные, опытные авиационные механики (техники) благодаря глубокому знанию техники оказывают инженерам неоценимые услуги и помощь в деле совершенствования эксплуатируемых самолетов и двигателей.

В качестве примера того, как иногда грамотный авиационный механик (техник) самолета может подсказать инженерам очень важное, дельное решение, можно привести следующее.