Храп и синдром обструктивного АПНОЭ сна у взрослых и детей. Практическое руководство для врачей — страница 9 из 23

1. несинусовые сердечные аритмии (т. е. наджелудочковые и желудочковые экстрасистолии, мерцательная аритмия);

2. наличие постоянного кардиостимулятора;

3. периферическая ангиопатия или нейропатия;

4. состояние после билатеральной цервикальной или грудной симпатэктомии;

5. умеренные и тяжелые заболевания легких;

6. застойная сердечная недостаточность;

7. деформация пальцев, препятствующая постановке датчика;

8. использование альфа-адреноблокаторов и короткодействующих нитратов;

9. злоупотребление алкоголем.

Еще одним фактором, ограничивающий применение Watch PAT200 в отечественном здравоохранении, является то, что датчик регистрации PAT сигнала является одноразовым, а его стоимость находится в пределах 2500 рублей. Таким образом, затраты только на расходные материалы составляют не менее 2500 рублей на одно исследование. При этом, аналогичные затраты на компьютерную пульсоксиметрию составляют 50 рублей, на респираторный мониторинг – 300 рублей, на кардио-респираторный мониторинг – 400 рублей.

Несколько особняком стоит тип систем комбинированного холтеровского мониторирования ЭКГ и дыхания, хотя формально он может быть отнесен к кардио-респираторным системам. Примером может служить отечественная система «Кардиотехника-04–3 Р (М)» компании «Инкарт» (Санкт-Петербург), которая позволяет выполнять одновременно стандартное холтеровское мониторирование 3–12 каналов ЭКГ, а также сатурации, дыхания и храпа. Собственно холтеровская система устанавливается на сутки, а пульсоксиметрический датчик и диагностическая носовая канюля подсоединяются только на период сна. Соответственно, требуется определенное обучение пациента или наличие персонала для подсоединения датчиков перед сном и отсоединения утром. Определенное увеличение трудоемкости исследования вполне компенсируется получением информации о связи апноэ сна с нарушениями на ЭКГ, что представляет несомненный научный и практический интерес. Относительным недостатком системы является невозможность качественной дифференцировки обструктивных и центральных апноэ, так как отсутствуют датчики дыхательных усилий.

Интересно отметить, что практически все новейшие западные холтеровские системы на программном уровне обеспечивают детекцию эпизодов апноэ по косвенным признакам (изменениям пневмограммы, регистрируемой с ЭКГ электродов; динамике интервалов R-R или изменений амплитуды зубцов R). Таким образом, стандартное холтеровское мониторирование без каких-либо дополнительных датчиков позволяет с достаточно высокой чувствительностью и специфичностью предполагать наличие СОАС. Соответственно, можно предполагать, что с внедрением нового поколения холтеровских систем в практическое здравоохранение скрининг апноэ сна у кардиологических пациентов выйдет на качественно новый уровень.

Диагностические системы (тип 4)

Как уже говорилось выше, до недавнего времени единственным точным методом диагностики СОАС в мире считалось стационарное полисомнографическое исследование. Проблема заключается в том, что это чрезвычайно дорогое и трудоемкое исследование. За рубежом его стоимость колеблется от 1000 до 1500 долларов США, в России – от 8 до 12 тыс. рублей. При этом сомнология не входит в отечественные программы гарантированной или высокотехнологичной помощи, соответственно, пациент должен платить за исследования самостоятельно. Более того, на всю Россию имеется не более 40–50 полисомнографических систем. В ряде крупных областных центров вообще нет сомнологических центров.

Таким образом, важной является задача поиска более простых, но достаточно точных методов диагностики СОАС. Она стала особенно актуальной на фоне сокращающихся расходов на здравоохранение во всем мире. В 2008 г. Американская медицинская ассоциация проанализировала накопленные научные данные и приняла решение, что достоверный диагноз СОАС может быть установлен любой из систем 1–3 типа или системой 4 типа, которая регистрирует минимально 3 параметра: дыхательный поток, насыщение крови кислородом и пульс [4]. Фактически, данным критериям отвечает система респираторного мониторинга (рис. 5).

Рис. 5. Система респираторного мониторинга SomnoCheck Micro (Weinmann, Германия).

SomnoCheck Micro регистрирует дыхательный поток и храп с помощью носовой канюли, сатурацию и пульс. Дополнительно проводится компьютерный анализ формы пульсовой волны. В клиническом плане данная система обладает следующими диагностическими возможностями:

• диагностика синдрома обструктивного апноэ сна, синдрома центрального апноэ сна (дыхания Чейна-Стокса) и хронической ночной гипоксемии;

• выявление автономных микропробуждений, связанных с нарушениями дыхания;

• выявление микропробуждений, не связанных с нарушениями дыхания (подозрение на другие расстройства сна, например, синдром периодических движений конечностей во сне);

• общая оценка качества сна.

Большой интерес представляет разработка специальной кардиологической версии SomnoCheck Micro Cardio. Система выполняет сложный анализ с использованием алгоритма нейронных сетей ряда параметров пульсовой волны, отражающих состояние сердца и сосудов:

• формы пульсовой волны, включая индекс резистивности;

• вариабельности амплитуды пульсовой волны;

• регулярности пульса и связанных с дыханием колебаний пульса;

• частоты, периодичности, степени и формы десатураций;

• хронотропной реакции на десатурации.

Это позволяет с чувствительностью 80 % и специфичностью 77 % определять дополнительный сердечно-сосудистый риск у пациентов с артериальной гипертонией [5] в соответствии с классификацией Европейского общества по гипертонии и Европейского общества по кардиологии [6], а также Национальными рекомендациями по диагностике и лечению артериальной гипертонии [7]. Возможность использования SomnoCheck Micro Cardio для диагностики СОАС и оценки дополнительного сердечно-сосудистого риска особенно важна в свете того, что СОАС является наиболее частой причиной вторичной артериальной гипертонии [8]. Следует подчеркнуть, что весь приведенный выше объем диагностической информации удается получить с использованием диагностического метода, который по трудоемкости для медицинского персонала не сильно отличается от регистрации обычной ЭКГ. Постановка системы занимает не более 10 минут, расшифровка и анализ данных – около 20 минут. К четвертому типу систем также относится мониторинговая компьютерная пульсоксиметрия (МКП) – метод длительного неинвазивного мониторинга насыщения гемоглобина артериальной крови кислородом (сатурации – SpO2) и пульса. Для мониторинга применяются компьютерные пульсоксиметры, обеспечивающие регистрацию сигнала с дискретностью от одной до нескольких секунд. Таким образом, за 8 часов сна компьютерный пульсоксиметр может выполнить до 28800 измерений сатурации и сохранить полученные данные в памяти прибора (рис. 6).

Рис. 6. Компьютерный пульсоксиметр PulseOx 7500 (SPO Medical, Израиль).

В отделении восстановительного сна Клинического санатория «Барвиха» используются специализированные пульсоксиметры для мониторирования сатурации во сне PulseOx 7500 (SPO Medical, Израиль), в которых применяется отражающая технология регистрации сигнала, минимизирующая двигательные артефакты во сне. Данная технология также устраняет артефакты, обусловленные изменениями ногтевой пластинки. Использование мягкого пульсоксиметрического датчика обеспечивает комфорт исследования, а функция автостарт/автостоп упрощает его проведение. Для анализа полученных данных используется компьютерная программа, которая автоматически генерирует отчет, включающий параметры насыщения крови кислородом и пульса. Рассчитывается индекс количества значимых десатураций в час, фактически отражающий индекс апноэ/гипопноэ. Возможен также визуальный анализ кривых сатурации и пульса за любой выбранный интервал (от 10 секунд на экран) и за весь период наблюдения (рис 7):

Рис. 7. Пациент З., 49 лет. Тяжелая форма синдрома обструктивного апноэ сна, индекс десатураций 53,5 в час.

В верхней части рисунка: статистические данные по исследованию. В средней: 8-ми часовая развертка кривых сатурации и пульса. В нижней: 10-ти минутная развертка кривых сатурации и пульса. На графике SpO2 отмечается классическая картина циклических резких десатураций, обусловленных апноэ/гипопноэ (колебания SpO2 составляют 10 % и более). Индекс десатураций – 53,5 в час, что указывает на тяжелую форму апноэ сна. При этом средние показатели SpO2 лишь незначительно снижены (90,6 %), что указывает на «чистое» апноэ сна без сопутствующей хронической ночной гипоксемии другого генеза. Вне эпизодов десатураций насыщение крови кислородом находится в пределах нормы. На графике пульса – выраженная брадикардия (пациент принимал бета-блокаторы).

Подсчет количества десатураций в час (индекс десатураций) позволяет судить о частоте эпизодов апноэ/гипопноэ в час – индексе апноэ/гипопноэ (ИАГ). Так как ИАГ является основным критерием тяжести апноэ сна, фактически, МКП позволяет с высокой степенью достоверности прогнозировать степень тяжести нарушений дыхания во сне. Для уточнения обструктивного или центрального генеза апноэ необходимо проведение уточняющих методов диагностики.

Методика проведения МКП достаточно простая и нетрудоемкая. Программирование и установка пульсоксиметра занимают около 5 минут, расшифровка с автоматическим формированием заключения – около 10 минут. Пульсоксиметр может выдаваться пациенту днем, далее перед сном пациент самостоятельно устанавливает его на палец – прибор автоматически включается, утром снимает – прибор выключается. Далее пульсоксиметр возвращается персоналу для расшифровки в рабочее время. Исследования могут проводиться как в стационаре, так и на дому.

До настоящего времени в научных кругах идет активная дискуссия о целесообразности применения МКП для скрининговой диагностики СОАС. Высказываются мнения от полного неприятия данного метода до возможности его использования не только в качестве скринингового метода, но и для установления точного клинического диагноза СОАС. Противниками применения МКП, как правило, являются представители классической сомнологии, работающие в сомнологических центрах. Сторонниками, главным образом, являются врачи разных специальностей, работающие в учреждениях практического здравоохранения.