Борт субмарины военно-научных сил русского союза «Катран»
За стеклом выпуклого иллюминатора луч мощного двухкиловаттного прожектора выхватывал из мрака часть затонувшего корабля. Капитан Воронин, скрестив на груди руки, в задумчивости глядел на поросший ковром водорослей форштевень архаичной формы, на остатки носового орудия, на поручни-релинги, ставшие толстыми от растительного покрова. Что это за корабль лежит здесь, на траверзе Тулона, на глубине в шестьсот тридцать метров? Наверное, один из погибших во Вторую мировую. Английский корвет? Или немецкий шнелльбот? Или французский сторожевик?
– Разрешите подняться в рубку, капитан? – раздался певучий грудной голос за спиной Воронина, и капитан невольно улыбнулся. Это – репортер журнала «Эксперт», очаровательная Ксения. Хотя, говорят, женщина на корабле – к несчастью.
– Входите! – обернулся командир лодки «Катран», капитан-лейтенант Военно-научных сил Русского союза Николай Воронин.
Ксения грациозно поднялась из люка, задорно блеснув голубыми глазами. Воронин едва не хмыкнул, в который раз залюбовавшись фигурой журналистки в синем комбинезоне. Ему нравились такие женщины – с тонкой талией, крутыми бедрами и большой грудью.
Ксения чуть неловко улыбнулась. Воронин ведь ей тоже нравился. И в этот момент, стоя у иллюминатора со скрещенными руками и непокрытой головой, он напоминал капитана Немо со старой гравюры-иллюстрации к «Двадцати тысячам лье под водой». Эту картинку, вырезанную из старого журнала, Ксения видела в блокноте у почтенного старца, знаменитейшего русского историка и кризисолога Андрея Фурсова. Тот и в восемьдесят лет оставался мальчишкой-романтиком.
– Ой, как красиво! – всплеснула руками девушка, глядя куда-то за плечо командира «Катрана».
– Что, обломки корабля? – вскинул брови Воронин.
– Нет… Вот это чудо! – Ксения протянула руку в сторону иллюминатора.
Командир обернулся. Спиральная медуза с оранжевыми полосками на прозрачном теле-студне проплывала мимо иллюминатора, просвечивая сквозь «снег» планктона. Живая пружина длиной не менее метра, она походила на свернувшегося угря, который ритмично расправлялся и сжимался. Зрелище и вправду было необыкновенным. Медуза величаво уплывала из светового круга, оставляя в поле зрения останки неведомого боевого корабля.
– Ах, вы об этом. Красивая, чертовка! – кивнул Воронин. – А вот меня больше завораживает вид затонувших кораблей и судов. С детства мечтал их видеть, лежащих на больших-пребольших глубинах.
– А разве есть разница между кораблями и судами? Это разве не одно и то же? – изумилась девушка.
– Корабли – это все военное и парусное, – терпеливо пояснил командир. – А суда – все торговое и мирное, с механическими двигателями…
– Буду знать, – наморщила носик Ксения. Она встала рядом с Ворониным, едва касаясь его локтя плечом. – А что это там лежит?
– Пока не знаю, – командир с улыбкой посмотрел ей в глаза. – Кто-то из утопленников Второй мировой. Причем небольшой. Совсем не то, что мы ищем…
Ксения с легкой рассеянностью кивнула. Она прекрасно знала, что «Катран» вышел в скрытное плавание по Средиземному морю, чтобы – помимо всего прочего – искать остатки древних судов и кораблей, засекая точные координаты крушений. Чтобы потом русские подводные археологи могли их исследовать. Ибо Русский союз претендовал на роль мирового центра науки и культуры. Об остальных миссиях «Катрана» ей известно не было. На берегах древнего моря было неспокойно. На юге орудовали быстроходные катера и фелюги мусульманских пиратов. На земле бывшей Ливии, распавшейся на три части, шла постоянная война. Только-только отгремели бои в Триполитании: отчаявшиеся египтяне, страна которых обанкротилась и корчилась в огне внутренних конфликтов, попытались захватить нефтяные промыслы Киренаики. «Катран», подвсплывая по ночам, наблюдал в электронно-оптический перископ зарева пожарищ на берегу. Там, по приморским дорогам, громоздились груды искореженных танков и бронемашин, уничтоженных ударами с моря и воздуха – когда американцы были вынуждены пресечь египетскую интервенцию на некогда ливийские территории. С борта лодки поднимались беспилотные воздушные разведчики, скользя в сумраке бесшумными тенями. Они уходили к красноватым с желтыми склонами холмам Африки…
«Арабская весна», которой некогда восхищались недалекие умы, быстро превратилась в исламское мракобесие, в резню, насилие и войны, тянувшиеся вот уже скоро двадцать лет. Стреляли не только в Ливии, но и в Алжире. Исламисты и кемалисты резали друш друга в Турции. Гремели взрывы мусульманских экстремистов на юге Франции. Быстроходные катера пиратов налетали на прибрежные городки и селения нового Неаполитанского государства, образовавшегося после того, как Италия вышла из зоны евро и потом разломилась на богатую Паданию и нищий Юг. Впрочем, для арабов и нищая Неаполитания представлялась раем земным. Они откровенно захватывали Сицилию, ходили в первые налеты на Мальту. Западнее независимая Каталония цапалась с остатками Испании. Гибралтар после раскола Великобритании на Англию, Шотландию и Уэльс перешел под американский протекторат.
Мир давно сошел с ума. На самом Востоке Средиземного моря Израиль отчаянно пытался сохранить себя среди наступившего хаоса, стараясь защитить газовые месторождения на шельфе и угрожая ядерным оружием новой Османской империи, чьи эсминцы и фрегаты все чаще демонстрировали силу здешних водах. Севернее, на Кипре, оплотом стояла объединенная база Русского флота и наших ВВС, откуда в периодические патрули уходили боевые экранопланы и быстроходные ракетоносцы. Кипру не на кого было рассчитывать, кроме как на поднявшихся русских.
Среди этой кутерьмы и плавал нынче «Катран» – гибрид научно-исследовательского подводного корабля и бесшумной лодки для тайных операций. Ученый в военном мундире, способный и древние корабли искать, и высаживать русских агентов на неспокойные берега. А в его чреве, помимо научной аппаратуры, были и пара торпед, и ракеты типа «Клуб» для ударов по береговым объектам. Внутри тихо работали циркуляционные насосы ядерного реактора, а панорамный гидролокатор-сонар позволял искать не только остатки давних крушений на дне морском. Да и акустики «Катрана» могли не только голоса морских обитателей слушать…
Но сейчас Воронин стоял у иллюминатора с девушкой, которая ему отчаянно нравилась. Невзначай вдохнул запах ее волос.
– Жутковато как-то, – голос Ксении зазвучал взволнованно. – Стоим мы у этого окна…
– Иллюминатора… – машинально поправил ее капитан.
– Ну да, у иллюминатора. Мне все время кажется, что немыслимое давление воды вдруг выдавит стекло, и море хлынет к нам. Толстой быстрой струей. И мы не успеем уйти, и захлебнемся… – девушка зябко вздрогнула.
– Не бойтесь, Ксения – тихо ответил Воронин, кладя большие ладони на ее плечи. – Это ведь не стекло, а поликристаллическая шпинель. Она прочнее броневой стали. В этот иллюминатор можно стрелять из пулемета…
Голос его осекся. Мягко, но решительно повернув девушку к себе, он приник к ее губам…
В этот момент мировые проблемы интересовали его меньше всего…
Тайна шпинели
Все, что написано выше, моя фантазия. Но, читатель, прозрачная, огнестойкая, не подверженная коррозии броня действительно существует. Причем существует сегодня, в нашей реальности.
Есть такой очень красивый, редкий в природе камень – шпинель. Некоторые из его видов считаются драгоценными. Прекрасные шпинели восхищают глаз ценителя в центре корон и британского монарха, и русских царей. Шпинель – это всего лишь алюминат магния, MgAl2O4. Но шпинель, как оказалось, отлично пропускает сквозь себя и инфракрасное, и ультрафиолетовое излучения (хотя и не по всей ширине спектра). В шпинели нет двупреломления – сквозь нее ты не видишь сразу два образа одного и того же предмета.
А это – идеальный материал для обтекателей «охотников на самолеты», для ракет с тепловыми «глазами». Они смогут видеть цель – горячие сопла двигателей – и в инфракрасном свете, и в ультрафиолетовом диапазоне. Что означает последнее? То, что выброс из реактивного двигателя они зрят как ярко-фиолетовое кольцо. Потому такую ракету страшно трудно обмануть, отстреливая ложные горящие цели.
Мастер был первым, кто решил изготавливать поликристаллическую шпинель. Броневой прочности и отличной проницаемостью для ультрафиолетового и теплового излучений. Более того, именно благодаря Виктору Петрику военно-промышленный комплекс РФ в наши дни вообще заметил эту технологию.
Но и это вызвало приступы дикой злобы у сообщества «ученых», и самые грязные попытки уничтожить инноватора.
Храбрость Хачатура Багдасарова
Образцы поликристаллической шпинели передали в Институт кристаллографии РАН в декабре 2009 года по распоряжению главы Военно-промышленной комиссии при правительстве РФ, на тот момент – вице-премьера С. Иванова. Это были образцы прозрачных ракетных обтекателей, изготовленных частным институтом Виктора Петрика. Проанализировать их состав и дать заключение по образцам поручили признанному специалисту по кристаллам: члену-корреспонденту РАН Хачатуру Багдасарову.
Причем образцы передали с откровенно издевательскими комментариями. Дескать, это, кажется, и не шпинель вовсе. В общем, уничтожь этого мошенника и шарлатана. Такой враждебной позицией отличился и сам Институт кристаллографии РАН.
Хачатур Багдасаров провел исследование образцов и смело заявил: перед нами – действительно качественная поликристаллическая шпинель. Та самая прозрачная броня. Он даже не поленился сам съездить к Виктору Петрику и посмотреть, как у него в институте делается не моно-, а именно поликристаллическая шпинель.
Хачатур Багдасаров – выдающийся советский ученый, первым в мире вырастивший чистый, совершенный кристалл (1964 г.) не по вертикали, а по горизонтали, в молибденовой ванне. Работал он в тесном сотрудничестве со знаменитыми Прохоровым и Басовым, создателями лазера. Создавал рабочие тела для твердотельных (итирий-алюминиево-гранатных) лазеров.
Его досье:
Родился 21 мая 1929 г. в Самарканде. В 1951-м окончил Московский институт стали и сплавов. В 1964–1987 – заведующий отделом кристалловедения АН СССР. Заведуюющий отделом Института кристаллографии АН СССР/РАН.
Труды – по физике кристаллов. Первым доказал, что твердость выращиваемых кристаллов зависит от частот сверхзвуковых колебаний полей. Предложил новые методы выращивания моно– и поликристалльных структур, их укрепления и обработки. В Армянской ССР под его руководством было создано промышленное производство лазера.
Координационный руководитель научно-исследовательских работ в области выращивания монокристаллов в СССР. Член-корреспондент АН СССР/РАН с 1991 г. Лауреат Госпремии СССР в 1972 г., Госпремии РФ в 2010-м.
Революционная технология Багдасарова признана во всем мире.
Когда в январе 2010 года Хачатур Багдасаров провел анализ и заявил: это – поликристаллическая шпинель, обладающая пуленепробиваемостью, пропускающая инфракрасное и ультрафиолетовое излучение, годная для обтекателей ракет «земля-воздух» и «воздух-воздух», началась форменная истерика. И в ВПК, и в Академии наук. Мол, Петрик не мог это сделать, он явно где-то украл эту шпинель! Но поездка Багдасарова к самому Петрику показала: у Мастера есть это производство.
Тогда на Багдасарова стали откровенно давить: не отдавай документы анализа Петрику! Но Багдасаров, которого самого в семидесятые и даже восьмидесятые годы обвиняли в лженауке, на всех наплевал и документы В. Петрику передал.
Мне хорошо известно о мытарствах самого Багдасарова с его технологией: как его обзывали лжеученым даже после получения Госпремии 1972 года, как теоретики с презрением называли его «технологом» и не пытались разобраться в сути его технологии. Хотя у Багдасарова были и патент, и купленная японцами еще в 60-х лицензия, и развернутые в СССР производства по его технологии. Есть даже ныне работающая фирма «Багдасаров Кристал Груп» (http://www.bagdasarovcrystals.com/v1/) в Женеве, которая до сих пор его приглашает. Кто-кто, а Хачатур Саакович Багдасаров отлично знает цену некоторым «теоретикам» из Академии и ее «беспристрастность».
Но к этой теме мы вернемся дальше. А пока зафиксируем: в РФ давно есть технология создания прозрачной брони, которая пропускает ИК и УФ-излучение. И сделана она институтом Виктора Петрика.
Началось все с опала
Когда Мастер впервые занялся камнями? В восьмидесятые, когда отбывал свой тюремный срок в Сибири. На зоне он пребывал на особом положении, ибо многое умел. Имелась у него и своя лаборатория. Вернее, целый дом и лаборатория в одном обличье. Ведь ни для кого не тайна, что тот осужденный получает необычный статус на «зоне», кто обладает необычными умениями. А Мастер на то и был Мастером: конструировал, делал дорогие скрипки, а потом вот и драгоценными камнями занялся.
Именно за колючей проволокой он и вырастил черный опал, копию опала герцого Девонширского, в сто карат. По классической, можно сказать, золь-гель технологии. Это когда сначала составляющие камня приводятся в состояние высокодисперсного коллоидного раствора – золя, после чего, из-за слипания частиц, он превращается в гель. Ну, а потом гель, удаляя из него жидкость, превращают в твердое тело.
Но только с одной маленькой разницей. Желая добиться характерной для опала иризации, Мастер впервые (на определенной стадии процесса) ввел в золь-гель процесс ингибиторы, предотвращающие рост частиц. И впервые, находясь в колонии усиленного режима, осознано получил сухой порошок, состоящий из наноразмерных частиц. Как известно, тогда о нанотехнологиях в широких кругах еще и не подозревали. Слово «нано» знли лишь умники типа Дрекслера, введшего это слово в оборот только в 1986-м.
То был первый успех Мастера на одном из самых интересных направлений. Тогда мешочек выращенных черных опалов отправили в США на экспертизу. Там выдали сертификат – камни добыты на австралийском месторождении Лайтнинг-Ридж, там же, где был найден знаменитый опал герцога Девонширского. И, как рассказывает сам Виктор Иванович, выращенные им опалы вскоре продали за границу некие неведомые, но влиятельные люди, хорошо заплатив при этом талантливому «зека». Естественно, хорошо заплатив по тогдашним советским меркам.
За вырученные деньги он построил в колонии автомат, который выполнял почти все операции по изготовлению игрушечной мебели, которая, говорят, даже поставлялась в Германию.
Однако увлечение камнями осталось. Что, впрочем, далеко не случайно: ведь, по сути, искусственные камни – одно из самых перспективных направлений в создании конструкционных материалов будущего. Да-да, вместе, например, с композитами или алюминием, легированным углеродными нанотрубками. Мы ведь не зря в начале книги, заглядывая в будущее уже Седьмого технологического уклада, сказали о прозрачной стали. Пример-то – не очень и сказочный. Ибо прозрачная, жароупорная броня существует и сегодня. Как искусственный драгоценный камень.
В это, наверное, трудно поверить тем, для кого понятие «высокие технологии» сводится лишь к кремнию и написанию программ, к айпэдам и айфонам. Но специалисты давно говорят о новом «каменном веке». Еще в 1983 году корпорация «Мацусита Дэнки» показывала целиком керамический автомобильный мотор. Позже Владимир Попов резал своей керамикой стекло. Ну, а для вящего эффекта отметим, что «каменные» детали есть, например, в зенитных ракетах с тепловыми головками самонаведения.
Но как ставить на ракеты редкий, драгоценный камень? Пока этого не делается, потому что природная шпинель все-таки стоит слишком много. Пока «головы» ракет переносных зенитных комплексов типа американского «Стингера» или советской «Иглы» делались из фторида магния, MgF2, который пропускает лучи в тепловом и ультрафиолетовом диапазоне (длина волны от 0,12 до 8 микрометров, то есть – от 120 до 8000 нанометров).
ДЛЯ СПРАВКИ: диапазон ультрафиолетового излучения – 10—380 нанометров.
Диапазон инфракрасного излучения – от 740 нанометров до 1–2 миллионов нанометров.
Но в процессе производства обтекателей из фторида магния 87 % продукции идет в брак. К тому же, РФ лишилась своего производства прозрачных обтекателей – в ходе «реформ» и приватизации специальный завод в Никольском (Пензенская область) оказался разгромленным. Его прессы давно бездействуют.
Да и эти 12 процентов, которыми оснащали наши «Иглы», не решали стоящую перед ракетой задачу. Дело в том, что самолеты быстро научились уводить ракету в сторону с помощью отстреливаемых, ярко горящих магниевых ловушек. Кроме этого, обтекатели из фтористого магния имеют еще один очень существенный недостаток – при разогреве свыше 200 градусов керамика слепнет. MgF2 сильно подвержен эрозии. А значит, он не подходит для боевых ракет с гиперзвуковыми скоростями. Ведь их оболочка из-за трения в воздухе раскаляется так же, как и «лоб» (или днище) космического корабля, врывающегося в плотные слои атмосферы. Передние кромки крыльев и лоб летательного аппарата на скорости 5 махов (скоростей звука) разогреваются почти до 1200 градусов. Естественно, что ракеты с «глазом» из фторида магния, плавящегося при температуре в 1263 градуса, просто теряют прозрачность. А скорость для ракет воздушной войны – фактор критический. Иначе они не смогут поражать ни баллистические ракеты, ни перспективные гиперзвуковые самолеты, ни сверхзвуковые высотные цели.
Потому очень нужно было сделать рывок – создать обтекатели ракет из искусственной шпинели. Сверхпрочной и жароупорной. Шпинель, конечно, более «подслеповата», чем фторид магния, но зато она намного прочнее, ее температура плавления почти вдвое выше.
Американцы занялись этой проблемой с 1964 года. Такие известные ученые, как Navias (1961), Gatti и None (1979), Sellers and Roy 1973), Branton (1974), Hing (1976), Gentilman (1981), Maguire and Gentilman (1982), Nakahasi (1985), Shibata (1989), Boch (1991), Roy and Hassert (1991) считали, что физические и оптические свойства шпинели делают ее лучшим (среди всех известных материалов) кандидатом для использования в роли прозрачной брони для окон и обтекателей, в оптоэлектронных будущих системах наведения ракет и самолетов. В шестидесятые и семидесятые годы синтез шпинели исследовали многие солидные организации. То были и “Avco Corporation”, и “General Electric Space Division”, и North Carolina State University, Rutgers University, и знаменитый Стэнфорд (Stanford University), и “Coors Porcelain Company”. Ну, а в наши дни в США уже предприняты усилия по возрождению исследований и коммерческого производства шпинели. Военная Научно-исследовательская лаборатория США (Army Research Laboratory – ARL) и фирма “TA&T” (Technology Assessment & Transfer Inc) из города Аннаполис, штат Мериленд подписали соглашение о совместном исследовании «Разработка и оценка использования в качестве многомодового элемента прозрачной шпинели»
С 1972 года такие же работы пошли и в СССР, в Государственном оптическом институте (ГОИ). Вернее, ГОИ выступил головной организацией, а вообще в программе задействовали шестнадцать научно-исследовательских институтов – кто-то работал по синтезу порошков, кто-то – по созданию способов давления и т. д. Но, забегая вперед, скажем, что работа успехом не увенчалась. К сожалению, в СССР шпинель с ожидаемыми свойствами создана не была.
Однако военным делом применение искусственной шпинели не исчерпывается. Шпинель нужна и для медицины будущего.
Почему, скажем, не пошел в хирургии сапфировый лазер? Почему не получился полноценный лазерный скальпель? Потому, что сапфир разрушается, не выдерживает высокой нагрузки. Из-за этого лазерные скальпели используют только в микрохирургии, в операциях с кровеносными сосудами. Для глубоких разрезов скальпель на рубиновом лазере не годится: рабочее тело может просто взорваться. Да и делать такие «лучевые скальпели» очень трудно: едва перекосишь оптическую ось сапфира – и все изделие идет насмарку.
Однако немецкий ученый Аккерман предложил: делать лазерные скальпели с использованием шпинели. Тогда они смогут выдерживать нагрузку почти в сотню раз большую. Осталось дело за малым: создать производство искусственной шпинели нужных качеств.
Но, что называется – легко сказать. Американцы, помучившись с этим делом с 1964 года, его потом надолго забросили. Методы горячего прессования или спекания шпинели оказались не настолько эффективными, чтобы получать изделия нужного качества и размера. Растили монокристалл, а он выходил не того качества. Шпинель крайне тугоплавка – она «тает» при температуре 2135 градусов. Для сравнения: жар для плавления стали – 1450–1520 °C.
Но Мастер не был бы Мастером, если бы не занялся бы и этой каверзной задачей, двинувшись своим путем. Он решил, что незачем заниматься монокристаллом шпинели, когда можно делать шпинель поликристаллическую. Но зато какую!
Впрочем, не будем забегать вперед, читатель.
Рождение «каменного» прорыва
Только-только выйдя на свободу в 1989 году, Виктор Иванович решил заняться искусственными драгоценными и полудрагоценными камнями. Изначально – из чисто ювелирных соображений.
В то время страна неудержимо и страшно впадала в агонию. Экономика шла вразнос. И вот после гибели Советского Союза Мастер покупает первые установки для производства бесцветных сапфиров – лейкосапфиров. Аппараты «Омега» для выращивания монокристаллов лейкосапфира, кстати, и ныне производит Луганск (http://omega-crystals.com/ru/). Делали их с прототипа: печей «Гном», разработанных в ГОИ. В свою очередь, выяснилось, что это были не очень удачные копии старых иностранных агрегатов, работающих на технологии Киропулоса.
Виктор Петрик действительно выкупил те установки, что были произведены по заказу Минобороны СССР, но после трагедии 1991 года оказались неоплаченными военными. Тогда десять аппаратов в 1992-м приобрел Мастер, и столько же – директор Института геологоразведки Виктор Рябков. Виктор Иванович долго мешкал, но потом поставил свои машины на заводе «Большевик». Но потом оба они свои «омеги» продали: они были уже неинтересны. Почему? Технология выращивания лейкосапфиров была уже давно устаревшей. Да и кристаллы на них получались плохого качества.
Нужно было двигаться дальше. Виктор Петрик делает личный заказ на военном заводе «Электромеханика» во Ржеве – на изготовление восьми машин продольно-горизонтального синтеза, разработанных гениальным ученым, член-корреспондентом РАН Хачатуром Багдасаровым.
Именно на установке Багдасарова В. Петрик впервые в мире вырастил гигантский рубин в молибденовом тигле. Дело в том, что синтез камней традиционными методами (например, методом Чохральского) имеет некооторые сильные ограничения. Например, невозможность равномерного распределения в кристалле, растущем из расплава, заданных примесей – в процессе формирования кристаллической решетки они просто вытесняются.
Это свойство положено в основу технологии очистки материалов методом зонной перекристализации градиентом температур. Так получают сверхчистый алюминий, что называется – девять девяток. То же происходит и при очистке лейкосапфира: вся грязь концентрируется в «пятке» выращиваемого кристалла. Ее остается только отрезать.
А зачем вообще аносить в кристалл какие-то примеси? Да затем, что от них зависит многое, в том числе – и окраска камня. Например, бесцветный корунд (лейкосапфир) с вндренными в решетку атомами титана будет иметь голубой цвет, а примеси хрома придадут ему ярко-красную окраску, и мы получим драгоценный камень под названием «рубин». Еще одна трудность – взаимодействие при высоких температурах хрома с материалом тигля. А это, как правило, вольфрам.
– В свое время профессор Мусатов из ГОИ пробовал вырастить гигантский рубин для лазеров. Ради этого невероятными усилиями был создан семикилограммовый иридиевый тигель. Но хром взаимодействует даже с иридием, – рассказывает Виктор Иванович. – Впервые в истории искусственный рубин синтезировал Вернель, в конце девятнадцатого века. Для этого он разработал бестигельный метод, при котором шихта плавится прямо в пламени водородной горелки.
Нам же удалось вырастить рубин в молибденовой «лодке». Чем же был защищен молибден? По методу горизонтального синтеза Хачатура Багдасарова: «лодка» с шихтой входит в зону нагрева. В носик «лодки» введен маленький природный рубин-затравка. Далее расплав, охлаждаясь, начинает кристаллизоваться вокруг той самой затравки.
Что сделал я? Сначала вырастил лейкосапфир. Потом снова размягчил его и насыпал сверху смесь оксидов хрома и железа. Ионы хрома, не соприкасаясь со стенками тигля, диффундируют в кристалл, занимают в решетке свободные от алюминия вакансии. Так получился рубин…
Следующей целью стала шпинель. Цветом такая же, как и рубин, но с фиолетовым оттенком. Потому ее поэтично называют «рубином цвета запекшейся голубиной крови». Этот оттенок придает шпинели содержащийся в ней магний.
– Засев за литературу, я обнаружил работу немца, доктора Аккермана, где он говорил о том, что лазерный скальпель не на рубине, а на шпинели – это настоящий прорыв в лазерной хирургии, – продолжает Мастер. – Аккерман уповал на природную, монокристаллическую шпинель. Прочитав такое, решаю: переключусь с ювелирной цели на другую, займусь-ка конструкционной шпинелью!
И тут Виктор Иванович приходит к выводу: для этого потребна на монокристаллическая, а поликристаллическая шпинель. Потому что она по части «трещиноватости» в 14 с половиной раз более стойка, чем монокристалл. Поясним: монокристалл – это действительно один, сплошной кристалл. Поликристалл – это множество «кубиков», отдельных кристаллов, спаянных в одно «тело». Эти кристаллики расположены упорядоченно, и если один из них трескается, то трещина не выходит за его границы. А уж если трескается монокристалл, то раскалывается сразу по всей протяженности. Особенно при перегреве кристалла такое случается, например с сапфирами.
Но надо было синтезировать поликристаллическую шпинель. Поиски в литературе показали, что ученые в США и у нас давно пытаются это сделать. Для чего? Для тех самых прозрачных ракетных обтекателей, проницаемых и для радиоволн, и для инфракрасных лучей, и для ультрафиолета. Но в тот момент Мастер думал об оружии в последнюю очередь. Приоритетом были именно скальпели для лазерной хирургии.
Как же добиться желаемого, если здесь потерпели неудачу и советские, и американские исследователи? Мастер приходит к выводу: они пытались синтезировать поликристаллическую шпинель из сульфатов магния и алюминия. Для синтеза пробовали подобрать температуры, давления и всевозможные добавки.
Мастер сам заказывает специальные прессы на Армавирском заводе испытательных машин: умопомрачающе дорогие. Ведь их пресс-формы должны быть сделаны методом порошковой металлургии из циркония и молибдена. Никакой другой металл просто не выдержит крайне высоких, рабочих температур и давления, просто «поплывет». Но эти сложные прессы, способные долго и понемногу, повинуясь программе, наращивать давление, ему понадобились несколько в ином процессе, нежели тот, что пробовали использовать в США и СССР.
В. Петрик применил для получения поликристаллической шпинели тот самый золь-гель метод, что он использовал еще в исправительной колонии для того, чтобы сделать опал. Он растворил в изопропиловом спирте алюминий: варите в спирте стружку. В другой колбе Мастер растворил магний. Затем эти растворы сливались в нужном процентом соотношении: 60 на 40. А потом начиналось выпаривание. Так что никаких тайн тут не было и нет. Секрет – в добавляемом в процесс ингибиторе-замедлителе. Он приостанавливает рост частиц. И получаются наноразмерные частички.
Полученный мельчайший порошок Мастер высыпал в пуансон матрицы и сжимал их, и спекал при температуре в 600 градусов. В полученный спек затем помещался в те самые армавирские прессы, которые при высокой температуре начинали сдавливать его. Благодаря добавке из лития или скандия начинается рост поликристаллитиков. Они растут как раз вокруг крупиц добавки. А поскольку все происходит под давлением, эти кристаллики упорядочиваются, ориентируются в одном направлении. Из-за этой ориентированности вы получаете прозрачный в видимом диапазоне материал[1].
Полученную шпинель, уже в виде готовых обтекателей для ракет, Виктор Петрик передал на испытание в Оптический институт им. Вавилова. В тот самый институт, который безуспешно, начиная с 1972 и вплоть до 1998 года, пытался синтезировать этот материал. По результатам измерения спектральных характеристик в ВНЦ ГОИ им. С. И. Вавилова оформили метрологическое свидетельство № 51802-1201. Конструкционные характеристики разработанной шпинели оказались подтверждены метрологическими свидетельствами государственного сертификационном центра «ВНИИМ им. Д. М. Менделеева» в 1994 году. Проведенные исследования подтвердили, что термостойкость и прочность к разрушению у поликристаллических материалов значительно выше, чем у монокристаллов.
Но если бы Мастер в 90-е знал, что это отнюдь не триумф, а начало долгой борьбы за его изобретение! Если бы он знал, что еще придется выдержать!
А в девяностые один хороший отзыв о поликристаллической шпинели следовал за другим.
Генеральный директор Всероссийского научного центра «ГОИ им. Вавилова» В. И. Пучков написал:
«Разработку керамики с аналогичными свойствами ведут в СССР многие НИИ с 1974 года. Разработанная В. И. Петриком технология по синтезу алюмомагниевой керамики методом золь-гель-технологии является огромным научным достижением. Возможности применения алюмомагниевой шпинели очень велики».
Вслед за этим Мастер передает шпинель в компетентные органы, от которых она поступает в самое сердце ракетных технологий СССР, а теперь и РФ – к создателю. легендарных ракетных комплексов ЗРК «Круг», ЗРК «Оса», ЗPC «С-300В», ЗРК «Тор», ЗРС «Антей-2500», генеральному конструктору Концерна ПВО «Алмаз-Антей» Е. П. Ефремову. Он пишет:
«Разработанная В. И. Петриком оптическая керамика обладает уникальными свойствами, а ее создание является научным достижением».
А потом обтекатели из шпинели Петрика поступили к непосредственному производителю ракетных комплексов «Игла». И вот начальник и главный конструктор «Конструкторского бюро машиностроения», доктор технических наук Н. И. Гущин отмечает:
«Данный материал, безусловно, обладает высокими техническими характеристиками. В настоящее время при создании многоспектральных изделий специального назначения он может найти широкое применение для изготовления обтекателей изделий, работающих в экстремальных условиях».
Заместитель председателя комитата по военно-технической политике МО РФ А. Бриндиков оставляет свое мнение:
«Всеми специалистами отмечается высокий технологический уровень разработок, по ряду из которых аналогичные достижения за рубежом отсутствуют. Некоторые организации крайне заинтересованы в подобной оптической броневой керамике повышенной прочности для изготовления обтекателей».
Казалось бы, технология есть, она проверена. Осталось только принять решение, провести последние испытания – и приобрести ее у автора, чтобы развивать дальше. Но не тут-то было! Осенью 2009 года громыхнул знаменитый скандал, когда Мастера стали обвинять во всех грехах и в том, что на самом деле он ничего не изобрел. То же самое стали говорить и о поликристаллической шпинели. На этом фоне образцы броневой керамики Виктора Ивановича поступили в Институт кристаллографии РАН.
Экспертизу делали под руководством выдающегося ученого – члена-корреспондента РАН Хачатура Багдасарова. Его мнение нам особо интересно. Тем более что главные направления научной деятельности Багдасарова – создание теоретических основ синтеза тугоплавких монокристаллов и развитие лазерной техники.
Багдасаров свидетельствует
Итак, Хачатур Багдасаров, получив в руки эту синтезированную шпинель, проверил ее характеристики в декабре 2009-го – и дал заключение: да, это – прозрачная поликристаллическая шпинель! Но каким образом она сработана? Он сам бы хотел на это взглянуть, увидев исходные порошки. А когда увидел – стал другом Мастера.
Действительно, два из пяти представленных на испытания в Институт кристаллографии РАН образца шпинели Мастера обладали частичной прозрачностью для лучей с длиной волн до 200 нанометров, очень хорошей – в диапазоне волн в 400–900 нм. Ну, а самая лучшая прозрачность у них отмечена в диапазоне 3–5 тысяч нанометров. (Для сравнения: фторид магния пропускает волны длиной от 120 до 8000 нанометров. Диапазон ультрафиолетового излучения – 10—380 нанометров. Диапазон инфракрасного излучения – от 740 до 1–2 миллионов нанометров.)
То есть, ракета с передним окном из такой шпинели действительно увидит и тепловое, и ультрафиолетовое излучение самолета, а вернее – горячих сопел его двигателей. Вот что говорит сам Хачатур Саакович:
– Виктор Иванович Петрик открывает новую страницу в металлургии и вообще в области создания новых материалов. Это совершенно новая область, которой очень много занимаются в Соединенных Штатах, в Японии и у нас в России. Именно Петрик делает это дело очень успешно.
…Развиваются две технологии: золь-гель технология, которую продвигает Петрик, и технология прямого плавления вещества, которую развиваю я. Думаю, что технология Петрика – более перспективная, поскольку затраты экономические меньшие, энергетические – тоже меньшие и т. д. Нужно отдать должное Виктору Ивановичу: он очень открыт для дискуссии, он не создавал никаких трудностей в общении, он принимал активное участие во всех наших начинаниях. Все, что мы хотели, мы получили. Среди крупных достижений – это шпинель, температура плавления которой – 2135 градусов.
Это очень высокая температура и крайне агрессивная среда. Где тот материал, в котором это можно расплавить? Виктор Иванович показал, что такую шпинель можно получить не путем получения монокристалла, а через создание поликристаллов, причем при температурах от 900 до 1200 градусов. Думаю, что это – очень перспективное дело.
– Вторая работа, которая, на мой взгляд, очень интересная, это работа с кремнием. Я думаю, что энергетическая проблема по кремнию будет решена с помощью работ Виктора Ивановича Петрика.
…Эти работы являются прорывными, они открывают новую страницу в науке, поскольку нужно дать объяснение всем явлениям, которые он наблюдает, и поэтому с ним активно должны работать теоретики, объясняя все явления, которые он наблюдает. Если соединить фундаментальные исследования и прикладные работы Виктора Ивановича, то мы получим хорошие результаты. Мы поймем, в конце концов, что такое наночастица, как она взаимодействует с другими наночастицами и со средой, и получим совершенно новые результаты, которые считались ранее недостижимыми. Благодаря экспериментам, которые он проводит, он получил очень хорошие результаты, их мы можем использовать в практике.
Нужно повернуть к работам Виктора Ивановича металлургов. Нужно изучать наночастицы металлов, их особенности, их нескомпенсированность связей – и так далее. Надо изучать, как влияют эти нескомпенсированные связи на физические свойства керамических материалов.
…Обязательно должна быть оказана государственная и научная помощь Виктору Ивановичу, потому что он идет впереди всей планеты. Он проводит чудесные эксперименты, которые нужно объяснять. Почему получаются эти результаты, а не какие-то другие? Здесь очень важна роль теоретиков, которые занимаются проблемами новых материалов, и государство должно поддерживать эти работы. Это – новая страница в материаловедении.
Материаловедение состоит из двух частей. Первая связана с плавлением исходного вещества, и к этому направлению принадлежу я. И есть часть, связанная с твердым состоянием вещества, с использованием наночастиц для получения поликристаллов. Этому направлению принадлежит Виктор Петрик. Нужно объединять эти работы, привлекать специалистов по металлам и по керамике, объединять усилия разных научных организаций. Они должны создавать совершенно новую теорию получения новых материалов…
Мытарства первопроходца
Отметим, что история самого Хачатура Багдасарова – ярчайшее свидетельство глубокой и давней болезни отечественной науки. Дело в том, что, несмотря на мировое признание его технологического прорыва, успешное внедрение багдасаровского метода в производство и Государственную премию 1972 года, его еще в СССР пытались объявить лжеученым.
Кто? Теоретики. Те, которые презрительно называли его «технологом» и замыкались в своих формулах, вместо того, чтобы стоять рядом с экспериментатором в лаборатории и пытаться объяснить то, что выходило на ПРАКТИКЕ и противоречило их теориям. Наоборот, они стаей воронья налетали на Хачатура Багдасарова и пытались его заклевать, только критикуя его метод. При этом ни один из них ничего прорывного создавал: вся энергия этих теоретиков уходила на то, чтобы загрызть других. Один из них в Институте кристаллографии, Ч., даже уволил сотрудницу своего подразделения, когда та вырастила кристалл нафталина, причем с нарушением признанной теории. По принципу: опровергаешь устоявшиеся представления и теорию – тем хуже для тебя. И клевали Хачатура Сааковича долго – до конца 1980-х.
Потом, когда метод Багдасарова завоевал мировое признание, заговорили иначе: мол, не он один его создавал, «мы тоже пахали». В общем, вот вам доказательство «беспристрастности» отечественной науки.
Как все это похоже на историю самого Виктора Петрика! Впрочем, Х. Багдасарову еще повезло: его в свое время подкрепил своим авторитетом великий Мстислав Келдыш, в 1961–1975 годах президент АН СССР, а в 1975–1978 годах – член президиума Академии. Хачатур Багдасаров, отказавшись от должности главы строящейся Черноголовки, по поручению правительства СССР создал филиал Института кристаллографии. В РФ, увы, уничтоженный.
Мнение этого профессионала о шпинели Петрика для нас гораздо ценнее, чем злобствования старцев из Комиссии по лженауке, которые ничего великого в жизни не создали и спецами по части кристаллов не выступают. Все эти истории говорят о том, что наука наша серьезно больна: она пытается уничтожать новаторов вместо того, чтобы им помогать.
Какие же возможности открывают перед страной поликристаллы Виктора Петрика? В чем Багдасаров увидел перспективы, где может быть смычка его работ с трудами Мастера?
Ключ к мощным лазерам
Прозрачные обтекатели для ракет и медицинские инструменты – только часть дела. Мастер уверен, что именно поликристаллы позволят преодолеть и тот тупик, в который зашла лазерная техника. Позволят создать сверхмощные лазеры. В чем сей тупик? В том, что нет возможности делать рабочие тела мощных лазеров из монокристалла: он не выдерживает чудовищных нагрузок и разрушается.
– Поликристаллические материалы могут выдержать в тысячу раз больше! – рубит ладонью Виктор Иванович. – Недаром иностранцы уже создали алюмо-иттриевый поликристаллический гранат (YAG). То есть в алюминиевую кристаллическую решетку ввели иттрий. Но я-то тот же самый материал сделал в 1996-м, хотя тогда еще лишь в ювелирных целях. Как камень для колец. Из него я, кстати, сделал портрет Буша-младшего.
Но теперь такая керамика применяется для создания очень мощных лазеров…
Мастер рассказывает, что скачок мощности так называемых керамических лазеров произошел в 2001-м. Успеха добились японцы: команда Уэды из университета “Electro-communications” вместе с исследователями Яги и Янагитани из компании “Konoshima Chemical Company” (начиная с 1999 г.) разработали технологию получения активных поликристаллических сред для лазеров. Основанную именно на спекании в вакууме особо чистых исходных нанопорошков. В этой работе активное участие принимал и ученый из России А. Каминский, сотрудник Института кристаллографии РАН. Японцы успешно запатентовали этот метод.
Исследования японцев показали, что иттрий-алюминиевый поликристаллический гранат, созданный по их технологии, очень прозрачен, имеет низкое рассеяние света и при этом очень прочен – прочнее монокристалла. И жаростойкость у «поли-» намного выше, чем у «моно-». А главное – так можно получать очень большие поликристаллы. Но ведь Мастер пришел к этому на полтора десятка лет раньше. Но разве кто-то в РФ это заметил?
Прорыв японцев 2001 года в области поликристаллической лазерной керамики вызвал настоящий бум работ по разработкам такого рода материалов во всем мире. Они идут и у нас, и в США, и в Европе, и в Китае и даже в Иране. Только с 2005 по 2009 прошло пять международных симпозиумов, посвященных прозрачной оптической поликристаллической керамике. Но это вообще прошло мимо внимания Комиссии по лженауке.
После успешной демонстрации возможности получения иттрий-алюминиево-гранатного лазера (YAG-лазера) с поликристаллической оптической средой, активированной неодимом, в прорыв пошли американцы с китайцами. К разработкам технологий получения поликристаллических материалов приступили Ливерморская Лоуренсова лаборатория (Lawrence Livermore National Laboratory), “Baikowcki Company”, а также знаменитейшая корпорация «Рейтеон», создатель американского противоракетно-зенитного комлекса «Пэтриот». Сюда же подтянулся Макромолекулярный научно-инженерный центр университета Мичигана. Немцы запустили такие работы в Институте Макса Планка. Словом, мощнейшие и богатейшие научные центры Запада, с которыми так нелегко тягаться маленькому институту Мастера во Всеволожске.
– Американцы применяют поликристаллический YAG для постройки стокиловаттного лазера. На испытаниях он за десять секунд прорезает сталь в 2,5 сантиметра толщиной. Еще пятьдесят киловатт мощности добавят – и получат полноценное лучеметное оружие. Способное, кстати, и ракеты сбивать, – считает Мастер. – Так что все эти пляски вокруг ракет-противоракет в Европе, по-моему, только прикрытие. Тем самым американцы наших дурачков водят за нос. На самом деле, они ведут дело к созданию лазерного оружия. А Багдасаров, хорошо понимая последствия этого, потому меня и поддержал.
Между тем, в США вновь проснулся интерес к созданию обтекателей ракет их искусственной шпинели. По крайней мере, со специального симпозиума в американском Минобороны в 1998 году.
Мастер же наш уже умеет создавать поликристаллические сапфиры…
Настоящая броня
Можно ли делать из поликристаллической шпинели настоящую прозрачную броню? Конечно, можно! Шпинель так и называется – броневой. Ее тонкий слой может защищать от пуль даже внушительного калибра.
Держу в руках документ 1995 года. Почти двадцать лет назад на питерском абразивном заводе «Ильич» испытывались образцы алюмомагнезиальной шпинели, изготовленной в тогдашней компании Мастера, «Инкорпорации 4Т». В плитки из шпинели выпускали пули из старого автомата Калашникова, 7,62-ммллиметрового АКМ. Если уж быть точным, то плитки толщиной в 6 миллиметров клали на подложку из армидной ткани ТСВМ-К4, а потом палили в них из АКМ патронами образца 1943 года. Тем самым определяя скорость предела тыльной прочности этих плиток. Собственно говоря, стреляли по шпинели на полигоне войсковой части 33491 – на том самом Ржевском полигоне для испытаний средств бронезащиты.
Выяснилось, что шпинелевые плитки держат 7,62-мм пулю, обладающую скоростью в 790 метров в секунду. Тогда как стандартные алюмооксидные керамические плитки Б-6 имеют предел в 720 метров в секунду. Это, конечно, не пуля АК-74 с начальной скоростью в 900 м/с, но все же…
Потом было более позднее испытание: поликристаллическая шпинелевая плитка выдержала пять выстрелов из винтовки Драгунова! То есть, она сдержала пули гораздо более мощных, чем АКМ-овские, трехлинейных, пулеметных 7,62-мм патронов. А такие пули, как знают многие, пробивают лобовую броню бронетранспортера.
Плотность стали – от 7,7 до 7,9 грамма в кубическом сантиметре. Плотность алюмомагнезиальной шпинели – 3,58 грамма на кубический сантиметр. Хотя бронежилеты давно не делаются из стали, все равно итоги испытаний впечатляют. Шпинель – действительно броня. Она годна для того, чтобы делать из нее прозрачные элементы военной техники, пуленепробиваемые иллюминаторы для космических, летательных и подводных аппаратов, прозрачные щитки защитных шлемов. Да и многое другое, кстати, что требует и прочности, и легкости, и стойкости к высоким температурам. В принципе, мотор с цилиндрами и поршнями из камня, весящий меньше металлического – это реально. А еще – долговечные сапфировые подшипники скольжения, равные по свойствам подшипникам качения из стали. Пластины композиционной брони для противопульных современных доспехов. И, конечно, те самые обтекатели для сверхскоростных ракет, проницаемые и для инфракрасных, и для ультрафиолетовых лучей. А какие прозрачные шлемы для космических скафандров можно делать? Для водолазов?
– Это еще и бронестекла для автомобилей и вертолетов, – добавляет Мастер. – Причем толщиной в шесть миллиметров, а не сантиметров. Представляете, какая экономия веса для тех же вертолетов?
Злобные комментарии насчет того, что Петрик просто присвоил авторские свидетельства сотрудников ГОИ времен СССР, украл образцы материалов из этого института в начале 90-х и использует установки, сделанные в ГОИ, не выдерживают никакой критики. Ибо установки в Мастера – давно свои, сделанные по его заказам, а не устаревшие «омеги», шпинель он сам производит – и это легко проверить. Если же все это – ГОИ, то прошло уже почти двадцать лет с гипотетической «кражи». Ну, и где новые материалы от ГОИ? Где тонкие бронестекла для летательных аппаратов нашего производства, где – пуленепробиваемые и тонкие стекла для бронетранспортеров? Где все это в серийном производстве?
Нет их. И это – лучшее доказательство факта злобной лжи.
Лучшее доказательство того, чего на самом деле стоит пресловутая Комиссия по борьбе с лженаукой.
Однако могут ли сегодня творцы и смелые новаторы рассчитывать на оборонную промышленность РФ, которая, как нам говорят, возрождается? Нет! И дело о шпинели это показывает самым наглядным образом.
Постсоветский ВПК: тщетные надежды
Казалось бы – коли брать случай с поликристаллической шпинелью – у РФ есть отличный материал для оборонной промышленности. Мастер его уже создал. И что же?
Юрий Михайлов, председатель научно-технического совета Военно-промышленной комиссии при правительстве Российской Федерации (и заместитель председателя ВПК) прекрасно знал о результатах испытаний шпинели в Институте кристаллографии в конце 2009 года. Как, впрочем, и о более ранних экспериментах. Но 50 миллионов рублей, ассигнованные на разработку обтекателей ракет, ВПК передала в ГОИ, Государственный оптический институт. Тот, который так давно не может дать каких-то впечатляющих результатов. Но зато химик Михайлов в 2011-м стал академиком РАН. Случайно ли? Вряд ли.
– Знаете, что получилось? – возмущается Мастер. – Михайлов прислал в Совет безопасности отписку. Дескать, мы решили эти 55 миллионов разыграть на конкурсе по ОКР «Шпинель». А Петрик, мол, на конкурс не явился, участия в нем не принял. Угребки, они даже мне не сообщили о том, что проводится этот конкурс! И потому победу присудили все тому же ГОИ.
Я принес Михайлову тогда же свое углеродное соединение высокой реакционной способности (УСВР) и предложил: введите его в полимерные композиты и получите новые свойства. Понятно, что жаростойкость их и прочность повысятся.
А он мне в ответ: «Полимеры же от композитов не зависят. Я же полимерщик, я знаю…»
От такого заявления все внутри меня вскипело. Это говорит химик и академик РАН? Сижу и пытаюсь себя унять. При вести примеры или нет. Да достаточно набрать в Интернете «Влияние наполнителей на свойства полимерных материалов» – и вы увидите тысячи работ на эту тему!
Но новоявленный академик РАН имеет по этому поводу собственное мнение.
Правда, тогда Михайлов еще не был академиком, а выступал «всего лишь» как председатель научно-технического совета Военно-промышленной комиссии РФ, но от этого нам не легче. Представляю, как хохотали бы американские акулы военно-промышленного комплекса. О таком «грозном конкуренте» можно только мечтать…
– Да, Виктор Иванович, – горько усмехаюсь в ответ. – В академики ныне попадают из-за начальственного статуса…
– А почему, например, Андрей Кокошин попал в академики РАН? – подхватывает Мастер. – Только из-за статуса заместителя министра обороны в 90-е. Ибо никаких выдающихся научных прорывов за ним не числится. Потому Кокошин и не афиширует свое членство в РАН…
Но довольно о нынешних убожествах. Давайте еще раз окунемся в мир нашей фантазии.
Восточное Средиземноморье, 200 км к югу от Акротири
…В этом мире давно стали реальностью прошлые кошмары футурологов. Здесь, после развала Великобритании после выхода Шотландии из ее состава и после захвата шотландцами подпорки английского бюджета – доходов от нефти Северного моря – кипрские военные базы Акротири и Декелия были брошены некогда гордыми сынами некогда гордого и единого Альбиона. Теперь бедное правительство Южного Кипра отдало их территорию Русскому Союзу. Теперь тут обосновались русские группировки ВВС, ПВО, скоростного флота и морской пехоты. Конечно, в обмен на большие капиталовложения русских в остров. Да, в общем, греки-киприоты и жили-то нынче за счет массового притока на остров русских курортников. На пляжах чудесного острова звучали все диалекты русского языка – и акающий московский говор, и окающе-хэкающий малороссийский, и шипящий белорусский.
– Гляди, Олеся, кряветка!
– Нет, Марийка, то мядуза!
– Хосподи, та вы по русски-то балакайте!
– Так мы из Гродно!
– А мы – с Ростова!
Русский становился практически официальным языком Кипра. Отдыхающие из Русского Союза тратили здесь свои рубли, но как минимум половина из них возвращалась обратно – русский бизнес скупил здесь буквально все. И над всем этим развевались флаги Русского Союза – красные полотнища, где в золотую советскую звезду был вписан националистический одноглавый орел.
Но Кипр существовал в расколотом мире, полыхающем очагами войн и насилия. Здесь шла непонятная война, где материализовался еще один кошмар: частные военные компании. Похожие на пиратские сообщества, они формально не принадлежали ни к одной из сохранившихся стран. Но они по разным каналам снабжались неплохим оружием, ибо брались за щекотливые заказы и грязную работенку в интересах то Североамериканского Союза, то Ново-Османской империи, то Китая. Это было очень удобно: против русских действовали как бы частные фирмы.
Вот и сейчас четверка Ф-22 «Раптор» без опознавательных знаков приближалась с юга к базе Акротири. Так, чтобы хлестнуть по ней крылатыми ракетами – и отойти. Угловатые силуэты терялись на фоне вечерне темнеющего горизонта. Да пилоты «рапторов» особо и не волновались: на экранах радаров их машины почти не отражались.
Ведущий, капитан частной военной компании «Орлы Глобалии» Исмаил Джексон, вел свой самолет по показаниям системы GPS, не включая бортового радара. Четверка шла при полном радиомолчании. Капитан сжимал джойстик управления, стараясь сосредоточиться на выполнении задачи и отогнать неприятные мысли. Во всяком случае, русские до сих пор не заметили его группы и не подняли не перехват свои истребители. Вот сейчас они выйдут на рубеж пуска ракет «воздух-поверхность».
Но Джексон не знал, что уже попал в сеть. Русская база выбросила далеко от себя патрули из небольших беспилотных самолетов, барражировавших и над морем, и над горами. Каждый воздушный патруль состоял из пары машин. Одна – летающая станция обнаружения, щупающая пространство в нескольких диапазонах волн. Вторая машина – скоростная ракета, к которой пристроили внешний фюзеляж, длинные крылья и мотор с пропеллером. Фактически, то была барражирующая одноразовая пусковая установка. Беспилотники-часовые несли марку «Часовой», а роботы-убийцы – звались «перунами». Роботы незримо и неслышно обменивались информацией друг с другом и с наземным центром контроля воздушного пространства в Акротири. Данные во все звенья боевой сети летели с борта русского самолета-радара дальнего обнаружения, ходившего восьмерками над южным Кипром, с наземных радаров с фазированной решеткой, со спутников разведки.
Джексон не знал, что первым в мире попробует на себе новую русскую систему комбинированной обороны. Что его четверка, выдавая себя следами из взвихренного воздуха, уже засечена и отражается на большом дисплее в командном центре Акротири. И что его «рапторы» уже прошли первую линию дозорных беспилотников. В двухстах километрах к северу дежурный по узлу обороны капитан Манцев уже не отрывает взгляд от большого дисплея, где гости видны как движущиеся красные точки.
Коротко доложив обстановку в микрофон своей гарнитуры, Манцев кивнул операторам и положил руки на кнопку сигнала открытия огня. Он нутром чуял, что незваные гости вот-вот выпустят крылатые ракеты. На аэродроме базы уже пошли не взлет дежурные перехватчики Су-35, обжигая плиты ВПП горячими выхлопами. Ах, вот оно! От красных меток «гостей» отделились точки поменьше. Они пустили свои «гостинцы». Огонь! Манцев вдавил в пульт клавишу…
С этого момента нападающие были обречены. Выпустив ракеты, они заложили крутые виражи, стремясь уйти из опасной зоны. Пилоты передвинули рычаги управления двигателями на форсаж и стали резко снижаться. Но с огневых позиций ПВО русских уже взмыли вверх гиперзвуковые ракеты комплексов С-500. А две патрульные группы беспилотных аппаратов – таких тихоходных аэропланов – развернулись носами вслед уходящим. «Перуны» отстрелили ставшие враз ненужными крылья и внешние оболочки с бензиновыми моторами, став вмиг сверхбыстрыми ракетами. Из дюз их ударили ревущие струи огня. Две ракеты, захватив цели, понеслись на четыре скоростях звука к «рапторам». В этот момент их наводили на цели их «часовые».
Как ни невидим «Раптор» в радиодиапазоне, однако его двигатели сзади – как яркие фонари, особенно если глядеть на них через инфракрасные и ультрафиолетовые камеры-сенсоры. Глаза «перунов» в носовой части, прикрытые колпаками из отличной поликристаллической шпинели, вскоре сами увидели уходящие самолеты.
Исмаил Джексон слышал, как верещит система предупреждения о радиолокационном облучении. Он почувствовал, что на хвосте у него – чужая ракета, почуял это каким-то шестым чувством, отдавшимся холодным комом в животе. Судорожно сжав джойстик, капитан бросил взгляд на экран камеры заднего обзора. Шайтан! Огненный шар нагонял его Ф-22, причем так, как будто он стоял на месте, а противник несся со со сверхзвуковой скоростью. «Тепловая головка самонаведения!» – вспыхнула догадка в мозгу капитана. Он ударил по рычагу выброса горящих ложных целей. «Раптор», надсадно ревя моторами, выбросил в стороны тучу горящих «звездочек».
Но «Перун» на них не повелся. Интеллектронный мозг ракеты отлично видел ультрафиолетовые «овалы» работающих двигателей F119-PW-100 и не отвлекался на горячие ловушки. Джексон в самый последний момент успел рвануть рукоятку катапультирования. «Перун» взорвался сзади, поразив «Раптора» снопом осколков. Развалившись на три части, дорогущая машина рухнула в волны Средиземного моря.
Напарнику Джексона, лейтенанту Резнику, повезло больше. Он смог, едва не переломив самолет пополам, уйти от «Перуна» резкои переходом в набор высоты. Ракета потеряла след его двигателей и пронеслась вперед. Но «Перун» был умным и заложил свой вираж, отыскивая цель. А сзади уже нагоняла спасшийся «Раптор» ракета «Факел-5», выпущенная с наземного комплекса С-500. Ее курс подправлял автомат с борта самолета-радара над базой. Он-то видел турбулентный след врага.
Еще один лохматый ком огня озарил небо.
Но оставались еще восемь крылатых ракет, идущих на базу. Они уже захватили своими «головами» работающие радарные станции и покачивающиеся в гавани боевые экранопланы русских. Однако и им долететь до целей было не суждено. Какие-то из атакующих «крылаток» были срезаны патрульными перехватчиками. Какие-то пали жертвой «факелов». И хотя двум ракетам удалось проскользнуть, на базе в Акротири на специальных ажурных вышках завращались купола, так похожие на крыши астрономических обсерваторий. Только не телескопы в них были, а излучатели мощных YAG-лазеров. Заработали поликристаллы, созданные когда-то по технологиям Багдасарова и Петрика. Повинуясь системе наведения, башни ударили рубиновыми «нитями» лазеров по подлетающей смерти. Лучи мгновенно сошлись на двух целях, на миг создав рубиновую паутину. Над рейдом, почти над самой водой, громыхнули два сильных взрыва.
Капитан Манцев в бункере облегченно вздохнул и от души выматерился. Несмотря на струи прохладного воздуха из кондиционера, его кожа исходила жарким потом.
Русский Союз в очередной раз показал свою силу в Восточном Средизнемноморье. Над местами предположительного падения сбитых кружили «часовые», нанося координаты в электронную память…
Борт атомной подлодки «Катран», военно-научные силы русского союза. 15 часов спустя
Ныряя в люк маленькой подлодки-разведчика «Тригла», капитан-лейтенант Николай Воронин еще раз вспомнил приказ командующего флотом Военно-научных сил, адмирала Виталия Шпикермана.
– Коля, постарайтесь найти части сбитых самолетов противника. Бьюсь об заклад, никаких опознавательных знаков на них нет. Да они нам и без надобности. Попробуйте взять образцы материала с фюзеляжей и кромок крыльев…
Воронин и оператор «Триглы», лейтенант Доржиев, отделили свой крохотный подводный аппарат от корпуса «Катрана». «Тригла» напоминала Воронину игрушечный планетоход из «Детского мира» советской эпохи. Тот же плоский корпус и большой прозрачный колпак кабины. И два улыбающихся космонавта за ним.
Конечно, Николай не мог помнить этих игрушек, да и того времени тоже, в силу возраста. Рожденный в самом конце 90-х, он был вынужден расти в окружении китайских аляповатых игрушек. Но вот сам детский планетоход времен его отцов он видел на приеме в Форосе, где Верховный принимал молодых морских офицеров Военно-научных сил во главе с адмиралом Шпикерманом. Сам-то адмирал, из давно обрусевших немцев, дружил с Верховным еще с нулевых годов, когда был еще простым офицером-акустиком Северного флота, а Верховный – лишь литератором. Но чудом сохранившуюся советскую игрушку молодой Воронин увидел на полке шкафа в кабинете правителя. Тот и до седых волос остался мальчишкой, бережно хранившим память о стране детства.
Только прозрачный колпак «Триглы» был сработан не из пластмассы, а из сверхпрочной поликристаллической шпинели. В носу аппарата, подобно сложенным лапам богомола, торчали могучие механические руки. С захватами и плазменным резаком.
– Поехали, Дорж! – бросил Воронин лейтенанту. Тот кивнул, поджав нижнюю губу, и включил моторы. Вспыхнули путевые прожекторы «Триглы». Маленький аппарат заскользил над илистым, холмистым дном. Здесь, на востоке Средиземного моря, прозрачность вод была просто немыслимой – 60 метров. Лучи прожекторов прорезали красивую синеву пучины. Они распугивали рыб, заставляли бросаться в стороны стаи светящихся креветок. Где-то сбоку очумело промелькнула каракатица. «Тригла» неспешно поплыла над древним, глинистым илом, освещая прожекторами редкие, поросшие длинными водорослями камни.
Аппарат шел к району предположительного падения обломков сбитого «Раптора», и сонар «Катрана» уже засек что-то похожее на них в полумиле справа. Воронин оглянулся и невольно залюбовался висящим в глубине корпусом своего большого корабля. Кажется, в носовой обзорной рубке мелькнул силуэт. Или ему почудилось? Воронин даже мотнул головой, словно отгоняя образ Ксении. Черт, сейчас нужно думать о деле. Хорошо было бы зайти в гавань Акротирии, отшвартоваться – да на денек-другой рвануть на полуподводный отель «Анаклия-3». Конечно же, с нею. Снять каюту, чтобы днем купаться, загорать и нырять с криолангом. Или кататься на легком экраноплане «Акваглайд» над ослепительно-синими водами, слушая ее смех. Ну, а ночью – сами понимаете…
– Курс – 223! – голос Доржиева вырвал капитана из сладких грез.
– Так держать, товарищ лейтенант, – с улыбкой ответил Воронин. Тихо урчали электромоторы. «Тригла» величественно парила в глубине и морщинистое дно, казалось, наплывает на экипаж аппарата, словно лента старой дороги в лучах фар.
Они недолго ходили галсами, когда увидели то, что искали по приказу штаба. Обгоревшая носовая часть тяжелого истребителя-бомбардировщика, выделяясь на фоне дна какой-то свежей яркостью, уткнулась обтекателем в вершину подводного холма. Блеснули в луче прожектора остатки остекления пустой кабины. Нелепо торчали в стороны изломанные плоскости самолета. Здесь, под водой, он смотрелся так же дико и нелепо, как, пожалуй, выглядел бы кашалот на вершине бархана в Каракумах.
Но Воронин и Доржиев только какую-то секунду глядели на остатки разбойничьего самолета. Дальше их как громом поразило. Рухнувший в море тяжелый Ф-22 продолжал падать и в воде. Она, хоть и затормозила его кувыркающееся падение, не погасила целиком его кинетическую энергию. Носовая часть сбитой машины воткнулась почти в вершину илистого холма, вызвав его оползень. Обращенная к «Тригле» сторона подводной горки, обрушившись, открыла нечто, от чего дыхание перехватило у обоих моряков.
– Товарищ капитан, вы видите? – почему-то прошептал Доржиев, раскосые глаза которого, казалось, превратились в подобие глаз-буркал из японских анимэ.
– Вижу… – выдавил из себя Воронин.
Оползший ил открыл их взорам бок чего-то округлого, обтекаемого. Вне всякого сомнения, невероятно древнего, лежащего в пучине с незапамятных времен – ибо это нечто обросло водорослями и ракушками задолго до того, как ил похоронил под собой эту тайну. Но и серовато-бурая, бугристая короста из остатков древней органики, покрывавшая Нечто, не могла скрыть того, что это – нечто летающее. Нечто похожее на бок толстого диска, лежащего с легким наклоном и скрывающегося в недрах холмов.
– Дорж… – облизав внезапно пересохшие губы, проговорил Воронин. – Это же… Это похоже либо на космический корабль пришельцев. Либо на подводный дом команды Кусто. Но подводные дома никогда не ставили на такой глубине. Значит, мы нашли что-то, прилетевшее из космоса, Дорж! Причем очень давно…
– Точно, командир, – кивнул лейтенант, блеснув черными глазами. – Мы нашли его. Подойти ближе?
– Давай, Дорж, – Воронин стиснул поручень.
В этот момент целый ураган мыслей пронесся в его голове. Если перед ними действительно пришелец из другого мира, сколько же тайн и удивительных находок найдется на его борту? Сколько же предстоит узнать русским, которые исследуют этого мертвого посланца неведомой цивилизации? От осознания этого у Воронина захватило дух.
Луч прожектора можно осветил бок таинственной находки. Сердце Воронина, казалось, пропустило удар. Он угадал проемы иллюминаторов на грани огромного диска…
Американский конкурент и халтура «комиссии Тартаковского»
Вы скажете, что Максим Калашников – неисправимый фантазер? Может, оно и так. В конце концов, писателям сие свойственно. Просто хотелось показать вам возможности «нового каменного века», чудо поликристаллической шпинели. В интерьере возможного великого будущего. Перед тем, как вернуться в серые сумерки дня нынешнего.
Факт налицо: перспективная технология у русских давно есть. Почему ее не развивают в РФ. Какого черта дело не сдвигается с места столько лет? Оказывается, и тут Академия наук ничего признавать не желает.
Но в чем же – основная ее претензия к оптической бронекерамике Петрика? В том, что его шпинель намного уступает материалу ALON (оксинитриду алюминия, соединению алюминия, кислорода и азота, «сдобренного», если верить янки, кубиками шпинели) американской “Surmet Corporation” (http://www.surmet.com/). Если наивно верить заключению комиссии РАН (под руководством академика Тартаковского в начале 2010 г.), АЛОН однозначно превосходит шпинель Мастера. Ибо, решила комиссия, у В. Петрика «керамика имеет следующие оптические и механические свойства: показатель преломления 1,72; пропускание (толщина образца 1 мм) 66–86 % в интервале длин волн 0,4–4,0 мкм; прочность на изгиб 280 МПа; трещиностойкость 2 МПа*м1/2.
Сравнение этих свойств со свойствами прозрачной броневой керамики ALON (оксинитрид алюминия), полученной Surmet Corporation (США): показатель преломления 1,81—1,66 в интервале длин волн 0,2–5,0 мкм; пропускание (толщина образца 2 мм) 85–89 % в интервале длин волн 0,2–4,0 мкм; прочность на изгиб 700 МПа; трещиностойкость 2,2 МПа*м1/2[11] показывает, что алюмомагниевая шпинель имеет более низкие характеристики. В частности, пропускание в видимой области спектра и прочность на изгиб у алюмомагниевой шпинели, соответственно на 15 % и в 2,5 раза меньше, чем у оксинитрида алюминия…»
Видимо, именно этим и мотивировано то, что деньги на разработку прозрачных обтекателей ракет ушли в ГОИ, а не в институт Мастера. Чтобы именно ГОИ догонял достижения американской «Сермит корпорейшн». Мастер же утверждает:
– У АЛОНа сужается полоса пропускания при нагревании до двухсот градусов, он моей шпинели – не конкурент. Если бы это было правдой, я бы давно занялся АЛОНом, его делать легче. Косвенным подтверждением моего мнения считаю то, что «Сермит» купила прессы для производства шпинели…
Я сам, вернувшись из Всеволожска в Москву, заглянул на сайт “Surmet” и теперь могу сказать, что академики из комиссии Тартаковского откровенно халтурили. Никто из них явно не бывал на сайте американской «Сермит». Ибо там обнаружилось немало интересного. Можно сказать, ценные улики, которые новые инквизиторы то ли не увидели, то ли намеренно пропустили.
Из сайта видно, что американская фирма вовсю рекламирует изделия как из АЛОНа, так и из производимой ею поликристаллической шпинели. Это – в том числе и линзы, и окна для разведывательной аппаратуры, и обтекатели ракет, и бронестекло. Причем «Сермит» утверждает, что АЛОН лучше поликристаллической шпинели, да и дешевле. О проблемах с утратой пропускной способности АЛОНом при нагревании тут – молчок. Но видно, что комиссия РАН (Тартаковского) завысила качества АЛОНа. Сама «Сермит» заявляет, что оксинитрид алюминия пропускает излучение, начиная с длины волны в 250 нанометров (0,25 микрометра), а не с 2 микрометров (200 нанометров), как в заключении комиссии Тартаковского. Итак, АЛОН по документам самой фирмы изготовителя проницаем для волн длиной от 0,25 до 4,6 микрометров (от 250 до 4600 нанометров). Комиссия РАН «имени Тартаковского» тут преувеличила показатели АЛОНа: она назвала пределы от 2 до 5 микрометров (200–500 нанометров).
Можно ли это сравнить с лучшими показателями поликисталлической шпинели Мастера? Испытания в Институте кристаллографии РАН показали, что два лучших образца обтекателей показали частичную прозрачность для излучения до 200 нанометров и большой уровень пропускания (более 50 %) в диапазоне от 2,5 до 5,7 микрометров (2500–5700 нанометров). Наивысшие показатели у шпинелевых обтекателей Виктора Петрика достигнуты в диапазоне 400–900 нанометров (более 70 % пропускаемости).
Если сравнить это с тем, что сообщает «Сермит корп.» (http://www.surmet.com/pdfs/ALON%20Data%20Sheet.pdf), то АЛОН действительно местами прозрачнее. У него проницаемость выскакивает за 80 % с длины волны в 250 нанометров и падает ниже этого уровня с длины волны в 4200 нм. Зато у шпинели Петрика проницаемость выше половины держится до 5700 нм. И если АЛОН почти не попускает сквозь себя волны по 200 нм, то наша шпинель все-таки на 50 % для них прозрачна, а это уже очень много в совокупности и поддержке от других уровней.
Но вот что настораживает: янки на своем сайте пишут, что их АЛОН – это якобы композит из собственно оксинитрида алюминия с кубическо-кристаллической шпинелью (“ALON® is an amazing new advanced ceramic that is based on a composition of aluminum oxy nitride with a cubic spinel crystal structure”.
Возможно ли такое в принципе? Мастер утверждает, что невозможно. Что физически нельзя смешивать этот материал со шпинелью, не потеряв свойств материала. И утверждения американской корпорации о композиции из АЛОНа и шпинели равносильны россказням некоего повара о том, что он использовал для приготовления вкусного торта и фруктовое желе, и куски селедки. А значит, перед нами – американская «лапша» на уши, которая призвана скрыть тот факт, что АЛОН теряет проницаемость при нагревании точно так же, как и старые обтекатели из фторида магния. Как и то, что американцам все-таки пришлось заниматься шпинелью, а не новомодным материалом.
Я не специалист, и не могу составить достаточно грамотное суждение. С моей точки зрения, АЛОН прозрачнее для ультрафиолета и немного менее прозрачен для инфракрасных лучей, чем поликристаллическая шпинель Виктора Ивановича. Но если АЛОН действительно теряет проницаемость при нагревании выше 200 градусов, то шпинель предпочтительнее. Тем более, что сама «Сермит» на графике показывает, что ее поликристаллическая шпинель лучше по качествам, чем АЛОН (стр. 5 презентации: http://www.surmet.com/pdfs/Surmet%20Optical%20Ceramics%20Brochure.pdf).
Я бы провел сравнительные испытания АЛОНа и шпинели Петрика, для чего нужно было бы методами разведки добыть образцы американских ракетных обтекателей. Чтобы установить, насколько АЛОН сохраняет свои свойства при нагревании и действительно ли янки смогли сделать композит из оксинитрида алюминия и поликристаллической шпинели. И если Мастер прав, то Академия наук у меня стала бы к позорному столбу. За откровенные халтуру и пристрастность. За стремление закопать заживо человека любой ценой, в ущерб делу обороноспособности страны.
Виктор Иванович рассказывает, что работал над своей шпинелью тогда, когда после гибели СССР в стране пришли в упадок все аналитические центры. Ему приходилось отправлять образцы шпинели в Израиль, где наука не погибала и развивалась все эти годы. Оттуда шли рекомендации: сдвиньте спектр проходящего сквозь шпинель излучения правее. Еще правее.
А когда израильтяне увидели, что задача решена, ко мне во Всеволожск приехали генералы Яаков и Поран, чтобы купить у меня шпинель. Они сказали: «Предположим, что вы захотели продать нам шпинель. Куда мы ее отправим для исследования? В израильский Институт керамики. Неужели вы думаете, что в том институте воскликнут: ах, Петрик уже создал нужную шпинель, закрывайте нам финансирование работ, которое шло двадцать с лишним лет? Нет, конечно, они к чему-нибудь обязательно придерутся.
Но мы прошли эту дорогу вместе с вами и потому предлагаем купить шпинель у вас. Ибо никто другой ее у вас не возьмет. Потому что такое же сопротивление вы встретите в любой стране».
Случайно или нет, но новые ракеты класса «воздух-воздух» ВВС Израиля, назваемые «Питон-4», захватывают цель не только по инфракрасному излучению, но и по ультрафиолетовой сигнатуре. Значит, евреи тоже применяют шпинель для прозрачных колпаков своих ракет. А ведь русские могли бы создать такие ракеты первыми.
А Мастер негодует:
– В РФ нет механизма покупки готовой технологии государством. По правилам нужно провести НИР и НИОКР, потратив пять лет. Вместо того чтобы провести сравнительные испытания – и купить ту готовую технологию, что лучше. Ну не глупость ли?
Но это, увы, отнюдь не глупость. Это – практически сознательная политика.
Шпинель и та же набившая оскомину история
Нам на все лады рассказывают о том, что РФ должна перейти на траекторию инновационного развития, что это – единственный шанс для нашего национального выживания. Спорить с этими утверждениями бессмысленно: они – святая правда. Однако инновационное развитие означает самое главное: способность и смелость страны делать то, что не делал до того никто в мире. Порождать нечто принципиально новое. Именно этим отличался Акио Морита, например, первым мире создавший в своей компании «Панасоник» такие продукты, как переносной транзисторный приемник, портативный плейер-«уокмен» и так далее. Все они сильно изменили окружающий мир.
Но это – еще «мягкий» пример. Намного более важны принципиальные инновации, буквально потрясающие основы прежнего мира. Например, создание антибиотиков (пенициллин и далее), изобретение электроэнергетики на переменном токе, овладение ядерной энергией, создание радиосвязи, самолета, вертолета, пластиков, минеральных удобрений, Интернета и т. д. Именно новации такого размаха и глубины нужны нынешним русским, как воздух. Ибо иначе нам не компенсировать ни невообразимые людские потери последнего столетия, ни прогрессирующее старение нации, ни последствия идиотского погрома страны в последние двадцать с лишним лет, ни дикую нехватку молодых и трудоспособных людей, ни тяжелейший климат и огромные расстояния Большой России. Иначе нам просто не преодолеть того чудовищного отставания от прочего мира, что накапливалось за бессмысленные годы саморазрушения и самопроедания с рокового момента развала СССР. Без эпохальных рывков мы действительно станем Верхней Вольтой, но теперь уже без ракет, самолетов, атомной энергии и т. д. Без таких прорывов, означающих громадную экономию национальных сил, мы оказываемся в отчаянном, безнадежном положении тупеющего и вымирающего народа.
Но может ли нынешняя РФ создавать подобные прорывные инновации всемирного значения? Способна ли ее наука сотворять и предъявлять человечеству то, что дотоле не делал еще никто в мире? Может ли она быть самостоятельным игроком мировой истории, а не по-рабски плестись вослед за кем-то?
Нет! Она – в инновационном параличе, в рабской зависимости и подражательности, в высокомерной замкнутости теоретиков. Причем болезнь эта началась еще, к сожалению, при СССР. Наша наука боится быть первой, ей непременно нужно кому-то подражать. Пророков в своем Отечестве она слишком часто отрицает. Никакого прогресса с советских времен тут нет. Хуже того: старая болезнь только прогрессировала, превратив РФ в глобальное захолустье, где принципиальные и смелые инновации всеми правдами и неправдами пытаются удавить в колыбели. Причем рука об руку с глупыми и подлыми администраторами от науки действует и погрузившееся в туполобый, мракобесный кретинизм общество РФ. Сопротивление инновациям и зверино-бессмыленная ненависть к их создателям охватывает миллионы обывателей.
Одно лишь это ставит под вопрос выживание нашей глубоко больной нации. Дело о шпинели уже дает еще одно подтверждение нашим печальным выводам.
Да, и здесь мы видим, что постсоветская наука страшно заражена существами, которые носят звание «ученый», но таковыми не являются. Они лишены главного качества настоящего ученого: детской любознательности. Нося высокие научные звания, оные существа отличаются негативным настроением и стремятся только к одному: сохранению статуса и уничтожению всех, кто, в отличие от них, может создавать что-то принципиально новое. Стоит появиться в России настоящему ученому – и его со всех сторон, роями и стаями, атакуют подобные «ученые».
Вместо того чтобы заинтересоваться новыми данными, подчас опровергающими прежние теории и представления, «ученые» поступают иначе. Ах, эксперименты и созданные установки противоречат тому, о чем говорят теоретики? Ну, тем хуже для экспериментов и установок! Истории Багдасарова и Петрика самым наглядным образом иллюстрируют эту напасть. Вся энергия массы таких вот «ученых» направляется не на то, чтобы объяснить новые прорывы и приобрести новые знания, а на то, чтобы уничтожить «возмутителей спокойствия». «Новое может придти только с Запада!» – так в глубине души уверены тысячи ослов, носящих звания кандидатов, докторов наук, а иногда – даже академиков. Их главное устремление: не рождать новое, а всячески душить любой намек на то, что отклоняется от прежних догм. Этакий вариант «китайского консерватизма», прогрессирующего застоя. Полностью негативная направленность таких «ученых» самоочевидна. Настоящих исследователей они воспринимают только как конкурентов в борьбе за свою долю бюджетного пирога, каковых лучше оболгать и вообще затравить.
Сами они бесплодны в смысле творчества, их основное занятие – критиковать и лить грязь на творцов, ничем им не помогая. (Достаточно заметить, что технологии того же Багдасарова до сих пор не имеют достаточного теоретического обоснования). Но такой подход крайне разрушителен: известно, что все новое имеет множество уязвимых мест для критики. В этих условиях в Постсоветии рождается невыносимое сопротивление инновациям: их авторы сначала тратят несколько лет жизни для создания чего-то нового, а потом – десятки лет вынуждены отбиваться от вороньих стай бездарных «ученых», норовящих похоронить их заживо. Пока продолжается этот позор, на Западе появляется подобное – и «ученые» подлецы принимают это по-рабски, как священную истину, моментально забывая о том, что то же самое – но в отечественном исполнении – они недавно остервенело топтали.
Все это предопределяет развивающееся отставание Постсоветии от остального мира. Ибо энергия творцов и подлинных, любознательных и пассионарных ученых тратится не столько на творчество и движение вперед, а на выживание и защиту своих прежних новаций. Таким образом, мы теряем множество шансов на прорыв, чудовищно замедляем собственное развитие и превращаемся в безнадежных подражателей чужих успехов. То есть ходим в вечно проигрывающих. Никакое инновационное развитие в сих условиях невозможно, и никакое Сколково здесь не в силах ничего изменить. В этом смысле официальная наука сама превращается в лженауку. А под видом «борьбы с лженаукой» репрессируются авторы возможных принципиальных инноваций. Сколково же становится очередным механизмом смердяковщины, «ползания за мировыми лидерами», а не очагом самостоятельного развития.
К чему все это ведет? Правильно: к тому, что серая масса постсоветских «ученых» выдавливает настоящих творцов за границу, где еще есть шанс реализовать свои замыслы. Либо просто ломает первопроходцам жизнь и карьеру. Никакое простое увеличение денежных вливаний проблемы этой не решит: деньги окажутся захваченными именно «серыми», поднаторевшими в критике и уничтожении неугодных, в захвате административных постов в науке. Сначала нужно создать механизмы защиты истинных ученых от «птичьего двора» из «ученых по дипломам». Проблема эта даже не осознается нынешними властями: ибо и они состоят из особей с психологией лакея Смердякова, из существ, низкопоклонствующих перед всем западным и пораженных комплексом национальной неполноценности. Простая смена власти в ходе свободных выборов (даже если эта утопия и состоится) не принесет излечения от беды «вечной вторичности». Ибо срежется только самая верхушка «айсберга» смердяковщины и обывательщины. Каковой затем опять воспроизведет соответствующую верхушку. Ну, сменится Путальный на Навальцына, однако по сути ничего не изменится.
Таким образом, позднесоветские проблемы науки не только никуда не делись – они стали еще тяжелее. Ибо если в СССР мерзости «научной серости» в основном замыкались в цеховом научном кругу, то теперь, с развитием Интернета и невероятным усилением власти медиа, выплескиваются в «широкий эфир». Теперь научная серость приобретает опору на массы жвачной немыслящей, обывательской сволочи.
Постсоветия превращается не просто в край иннновационого паралича, а в царство слабоумных потребителей, буквально уничтожающее последних умных и активных людей. В царство восторжествовашего лакея Смердякова, причем что «сверху», что «снизу» – все едино.
И это предопределяет грядущую развилку нашей истории: либо национальная Диктатура развития с подавлением серости и жвачных обывателей, со Второй Академией и Агентством передовых разработок. Либо – зловонная и позорная смерть русских, больше похожая на сгнивание заживо в выгребной яме. Ибо масса жвачных на любых свободных выборах изберет себе подобных, которые «как все».
Да, эти проблемы существовали уже в СССР. И тогда имелись миллионы придурков, готовых сменить великие победы в космосе на джинсы и искренне не понимавших, что можно иметь и джинсы, и звездолеты. Хватало в той стране и серых администраторов с психологией раболепного подражания Западу. Но в Советском Союзе все-таки были спасительные отдушины для творцов, некие «прямые туннели» для прорывов. Ибо СССР противостоял Западу, участвовал в гонке достижений и вооружений. Работал мощный ВПК, которому нужно было превзойти Запад и решить конкретные возникающие проблемы. Потому в советской «оборонке» принимали самые безумные решения, даже противоречащие господствующим теориям. Главное – работало и воспроизводилось бы в серийном производстве. Именно этот фактор (лазерное соревнование) позволило Багдасарову выжить, преодолеть сопротивление серости и добиться внедрения своих технологий в практику. Потому новатор Багдасаров не повторил судьбу Петрика.
Увы, в РФ сейчас нет и этого спасительного выхода для инноваторов. В связи с развалом советского оборонного комплекса.
Нам нужно изменить это позорное положение!
Потому что слишком серьезен и суров вызов времени.