Идеи с границы познания. Эйнштейн, Гёдель и философия науки — страница 18 из 78

Парадокс чистой математики на службе грубой коммерции не ускользнул от Майкла Харриса: название его мемуаров «Математика без апологий»[10] (Harris, M., Mathematics Without Apologies) пародирует название классического труда Харди. Харрис – выдающийся американский математик средних лет, работающий в блистательно-чистой стратосфере, где встречаются алгебра, геометрия и теория чисел. «Главной задачей первой части моей карьеры, – пишет он, – была гипотеза Бёрча – Свиннертон-Дайера», которая «касается простейшего класса полиномиальных уравнений, эллиптических кривых, для которых не существует простого способа определить, конечно или бесконечно число их решений» (эллиптические кривые лишь на первый взгляд элементарны, а на самом деле обладают глубинной структурой, которая делает их бесконечно интересными). Почти всю свою профессиональную жизнь Харрис провел в Париже, и это очень заметно: его мемуары полны подлинно галльской интеллектуальной игры и к тому же содержат ссылки на фигуры вроде Пьера Бурдьё, Иссэя Мияке и Катрин Милле (которую он называет «сексуальной стахановкой»), к тому же в них упоминается бесконечное множество парижских светских приемов с шампанским, на которых «за первыми двумя бокалами сопоставляются математические записи, а дальше беседа переходит на университетскую политику и сплетни». Это озорной, остроумный и сардонический текст (в алфавитном указателе есть пункт fuck-you money, то есть деньги, позволяющие, мягко говоря, послать все к черту и жить безбедно). Он содержит увлекательные художественные отступления, например, анализ оккультной математической структуры романов Томаса Пинчона, и очаровательные маленькие интерлюдии из области элементарной математики, вдохновленные галантными попытками Харриса разъяснить суть теории чисел одной английской актрисе за званым ужином на Манхэттене.

Харрис начинает с несложного определения простого числа, а потом по кирпичику выстраивает на его основе объяснение вышеупомянутой гипотезы Бёрча – Свиннертон-Дайера, которую международная группа ведущих математиков на пресс-конференции в Париже в 2000 году объявила одной из семи «Задач тысячелетия», назначив за решение каждой из них награду в миллион долларов. Харрис со знанием дела описывает самые глубокие открытия в современной математике, особенно провидческие труды Александра Гротендика. И много говорит о «пафосе» математического призвания. Он крайне скептически относится ко всему, что принято считать причиной увлеченности чистой математикой – что она красива, истинна, вообще хороша, – и особенно пренебрежительно отзывается об утилитаристском подходе к математике в духе золотой гусыни. «Делать вид, будто исследования по чистой математике вдохновлены возможностью применить ее на практике, не просто нечестно, но и не в наших интересах», – замечает Харрис. И добавляет, что открытые ключи шифрования, сделав мир безопасным для «Амазона», погубили мелкие книжные магазинчики (впрочем, только в США, а не во Франции, где закон запрещает розничным интернет-торговцам предлагать бесплатную доставку книг, продаваемых со скидкой). И с подлинно олимпийским высокомерием пишет о внезапной популярности «финансовой математики», которая открывает путь к вторичному обогащению на Уолл-стрит: «Один мой коллега хвастался, что студентов программы по финансовой математике в Колумбийском университете по умолчанию ежедневно кормят свежими фруктами, сыром и шоколадным печеньем, а другие кафедры, в том числе моя парижская, считают за счастье предлагать своим дипломникам, которым вечно не хватает калорий, чай в пакетиках и горстку крекеров». Даже в элитарной французской Эколь Политехник – Политехнической школе – семьдесят процентов студентов-математиков мечтают сделать карьеру в финансах.

Не вызывает у Харриса особого почтения и претензия на то, что занятия чистой математикой оправданы ее красотой, как говорили и Харди, и множество его единомышленников. Харрис поясняет, что когда математики говорят о красоте, на самом деле они имеют в виду удовольствие. «Вне этой области, где царит блаженная лень, считается дурным тоном признавать, что нас вдохновляет удовольствие, – пишет Харрис. – А чтобы примирить столь низменный мотив с “возвышенными умственными привычками”, можно прибегнуть к доводам эстетики».

Тогда с какой стати общество должно платить горстке людей за творческие упражнения в том, что доставляет им удовольствие? «Если бы меня спросил об этом государственный чиновник, – отвечает Харрис, – я бы заявил, что математики, как и прочие ученые, нужны в университетах, где они учат ограниченное количество студентов приемам, необходимым для развития технологического общества, а несколько большее количество студентов занимают курсами, которые призваны развеять иллюзии излишне самонадеянных претендентов на особенно популярные профессии (подобно тому как экзамен по началам математического анализа в США обязателен при приеме в медицинские школы)». На самом деле математический анализ врачам не нужен, но Харрис хотя бы соглашается, что инженерам, экономистам и руководителям службы материально-технического снабжения не обойтись без солидных знаний по математике, даже если с его точки зрения эта математика тривиальна.

Наконец, предполагается, что математика ценна тем, что она истинна. Со времен древних греков математика воспринимается как парадигма познания – она точна, необходима и не подвержена влиянию времени. Но о познании чего идет речь? Описывают ли истины, которые открывают математики, вечное высшее царство объектов – идеальных окружностей и тому подобного – существующих в общем и целом независимо от математиков, которые их изучают? Или математические объекты – на самом деле конструкции, созданные человеком, и существуют лишь в нашем сознании? А может быть – еще радикальнее – чистая математика не описывает вообще никаких объектов и это просто изысканная игра формальных символов, в которую играют при помощи карандаша и бумаги?

Вопрос о том, что же такое математика, не дает покоя философам, но не слишком тревожит Харриса. Философы, занимающиеся проблемами математического существования и истинности, утверждает он, как правило, не обращают особого внимания на то, чем, собственно, занимаются математики. Он пристрастно противопоставляет «философию Математики» (с заглавной «М») – «чисто гипотетический субъект, придуманный философами» – «философии математики» (со строчной «м»), отправной точкой которой служат не априорные вопросы эпистемологии и онтологии, а деятельность трудящихся математиков.

Тут Харрис несколько лукавит. Он почему-то не упоминает, что стандартные противоположные точки зрения в философии математики изначально сформулировали не философы, а математики, более того, некоторые величайшие математики минувшего столетия. Отцом «формализма», считающего высшую математику игрой в формальные символы, стал Давид Гильберт, «супергигант», по оценке Харриса. А за «интуиционизмом», согласно которому числа и другие математические объекты – мысленные конструкции, стоят Анри Пуанкаре (тоже «супергигант»), Герман Вейль и Л. Э. Я. Брауэр. Бертран Рассел и Альфред Норт Уайтхед занимали так называемую позицию «логицизма» и в своих фундаментальных Principia Mathematica стремились показать, что математика – это просто переодетая логика. А Курт Гёдель отстаивал «платонизм», согласно которому математика описывает вечное и идеальное царство объектов, существующих вне нашего сознания, подобно платоновскому миру форм.

Все эти титаны математики были страстно увлечены философией «Математики с большой буквы», по выражению Харриса. Жаркие споры между ними и их сторонниками разгорелись особенно сильно в двадцатые годы и зачастую переходили на личности. Удивляться здесь нечему: математика того времени переживала «кризис» в результате целой череды открытий, способных подорвать любую уверенность, например, появления неевклидовых геометрий и открытия парадоксов в теории множеств. Возникло ощущение, что под математику нужно подвести новый прочный фундамент, иначе старому идеалу несомненности настанет конец. Под вопросом оказался сам способ заниматься математикой – какие типы доказательств можно признавать и какие применения бесконечности допускать.

И по техническим, и по философским причинам ни одна из конкурирующих фундаментальных программ начала XX века не была признана удовлетворительной (в частности, теоремы о неполноте Гёделя привели к непреодолимым проблемам и для формализма Гильберта, и для логицизма Рассела и Уайтхеда: грубо говоря, теоремы о неполноте говорят, что непротиворечивость правил математической «игры» Гильберта в принципе недоказуема, а логическая система наподобие системы Рассела и Уайтхеда не способна вместить в себя все математические истины). Вопросы математического существования и истинности остались без ответа, и философы по-прежнему размышляли над ними, пусть и безрезультатно, свидетельством чему служит откровенное название статьи Хилари Патнэма, вышедшей в 1979 году: «Философия математики, или Почему ничего не получается» (Putnam, H., Philosophy of Mathematics: Why Nothing Works).

С точки зрения Харриса все это несколько vieux jeu. Ощущение кризиса в профессии, такое острое меньше века назад, несколько померкло, старые трудности удалось либо кое-как преодолеть, либо замаскировать. Если спросить у современного математика, к какой партии он принадлежит, ответом, как в анекдоте, будет, что он платоник по будням и формалист по выходным. То есть математики во время работы над математическими задачами считают, что имеют дело с реальностью, не зависимой от сознания, но когда у них появляется настроение поразмышлять абстрактно, многие утверждают, что математика – всего лишь бессмысленная игра с формальными символами.

Сегодня сдвиги парадигм в математике имеют отношение скорее к поиску более совершенных методов, чем к кризису. Например, бытует мнение, что всю математику можно выстроить из теории множеств. Теория множеств отталкивается от простой идеи, что что-то одно – элемент чего-то другого, и показывает, как на самом скромном материале можно создавать структуры бесконечной, как видно, сложности – системы чисел, геометрические пространства, нескончаемую иерархию бесконечностей. Например, число 0 определяется как «пустое множество», то есть множество, в котором нет ни одного элемента. Число 1 можно определить как множество, которое содержит один элемент – 0 и больше ничего. Число 2, следовательно, можно определить как множество, содержащее 0 и 1, и так далее – каждое следующее число содержит множества для всех предыдущих чисел. Таким образом, числа перестают быть началом начал и рассматриваются как просто множества постепенно усложняющейся структуры.