Идеи с границы познания. Эйнштейн, Гёдель и философия науки — страница 35 из 78

Однако мысль, лежавшая в основе этого триумфа человеческого разума, по-прежнему казалась многим оккультной и сомнительной. Да и сам Ньютон относился к ней, мягко говоря, с недоверием. Когда он в своих «Началах» представлял доказательство закона об эллипсах, то всеми силами постарался, чтобы анализ бесконечно малых привлекался в нем как можно меньше, и в результате проследить логику получившегося изложения, втиснутого в евклидовские рамки, оказалось невозможно. (Даже нобелевский лауреат Ричард Фейнман запутался в хитросплетениях ньютоновских рассуждений, когда рассказывал о них студентам на лекции в Калифорнийском технологическом институте.) В более поздних сочинениях Ньютон следил за тем, чтобы не рассматривать бесконечно малые сами по себе – только в отношениях, которые всегда были конечными. В последние годы жизни он и вовсе отрекся от идеи бесконечно малого.

Сильное недоверие к бесконечно малым величинам питал и Лейбниц. С одной стороны, они требовались для его метафизического принципа natura non facit saltum («природа не делает прыжков»); без этих амфибий, плавающих между существованием и несуществованием, переход от возможности к реальности был, похоже, немыслим. С другой стороны, они сопротивлялись любым попыткам строгого определения. Как Лейбниц ни старался, он только и мог, что множить аналогии, сравнивая, например, песчинку с земным шаром, а земной шар со звездами. Но когда его ученик Иоганн Бернулли привел в пример крошечных созданий, которых удалось разглядеть в микроскоп (только что изобретенный Левенгуком), Лейбниц возмущенно возразил, что эти малюсенькие существа все же имеют конечный, а не бесконечно малый размер. В итоге он решил, что бесконечно малые величины – просто fictiones bene fundatae («хорошо обоснованные выдумки»): они помогают делать изящные открытия, не приводят к ошибкам, однако на самом деле не существуют. Однако Джорджу Беркли этого было мало. В 1734 году он опубликовал гневную филиппику в адрес математического анализа бесконечно малых под названием «Аналитик, или Обращение к нечестивому математику» (The Analyst; or, A Discourse Addressed to an Infidel Mathematician). Его подтолкнул к этому растущий престиж науки механики, таящий в себе угрозу ортодоксальному христианству («нечестивый математик», к которому он обращается, – это, как принято считать, друг Ньютона Эдмунд Галлей). Беркли утверждал, что догматы христианского богословия, как бы ни противоречили они логике (как иногда представляется на первый взгляд), не могут состязаться в туманности и нелогичности с опорой новой науки – бесконечно малым. Сторонники математического анализа были поставлены перед дилеммой: или бесконечно малые величины равны нулю, а в этом случае вычисления, предполагающие деление, теряют смысл, или они не равны нулю, а тогда ответы неверны. Быть может, насмешливо заключал Беркли, нам лучше всего считать бесконечно малые величины «призраками ушедших чисел».

А между тем по ту сторону Ла-Манша Вольтер, в числе прочих, ничуть не волновался из-за тонкостей, связанных с понятием бесконечно малых; он беззаботно называл математический анализ «искусством перечисления и измерения того самого, чье существование невозможно себе представить». Ведь математический анализ бесконечно малых как инструмент научных исследований оказался так хорош, что не оставлял места для сомнений. В конце XVIII века математики, в том числе Лагранж и Лаплас, применяли его для разъяснения самых темных мест небесной механики, которые ставили в тупик Ньютона. Мощь математического анализа была сопоставима разве что с его универсальностью. Он давал возможность проделывать вычисления, связанные с любыми непрерывными изменениями. Дифференциальное исчисление позволило выразить скорость изменений как отношение бесконечно малых. Интегральное исчисление показало, как через сумму бесконечного количества подобных изменений описать общую эволюцию рассматриваемого явления. А основная теорема анализа связывает две эти операции, причем довольно красиво, показывая, что одна из них логически представляет собой зеркальное отражение другой.

В этот золотой век научных открытий ученые относились к бесконечно малым величинам, как к любым другим числам, пока в вычислениях не становилось удобным приравнивать их к нулю (как не без лукавства делал Ньютон в случаях вроде вышеописанной задачи о падающем камне). Такое беззаботное отношение к бесконечно малым отражено в совете французского математика Жана Лерона д’Аламбера: «Allez en avant, et la foi vous viendra» («Вперед, и вера придет к тебе сама»).

Однако оставались и такие, кто считал недопустимым, что здание современной науки зиждется на таком шатком метафизическом фундаменте. На протяжении всего XVIII века предпринималось множество попыток опровергнуть все обвинения в адрес бесконечно малых, выдвигаемые критиками вроде Беркли, и найти логичный набор правил их применения. Все эти попытки оказались безуспешными, а некоторые попросту глупыми (Карл Маркс уже в середине следующего века тоже приложил руку к этой задаче и оставил больше тысячи неопубликованных страниц на эту тему). С философской точки зрения одним из наиболее симпатичных был подход Бернара де Фонтенеля, который попытался подвести рациональную основу под идею бесконечно малого, описав его как нечто обратное бесконечно большому. Хотя в конечном итоге Фонтенель так и не справился с формальными сложностями, он провидчески утверждал, что реальность объектов вроде бесконечно малого в конечном итоге зависит от их логической непротиворечивости, а не от их существования в реальном мире.

В XIX веке, когда Гегель и его последователи воспользовались путаницей вокруг бесконечно малого как подтверждением своих представлений, что математика внутренне противоречива, наконец удалось найти способ избавиться от этой досадной идеи, не жертвуя восхитительной конструкцией математического анализа, которая на ней строилась. В 1821 году великий французский математик Огюстен Коши сделал первый шаг, задействовав математическое понятие «предела». Это понятие, смутно просматривавшееся еще в идеях Ньютона, было призвано определить мгновенную скорость не как отношение бесконечно малых, а как предел ряда обычных конечных дробей; члены этого ряда никогда не достигали предела, но приближались к нему «на сколько нам угодно». В 1858 году немецкий математик Карл Вейерштрасс придал выражению «на сколько нам угодно» точный логический смысл. Затем, уже в 1872 году, Рихард Дедекинд, тоже немец, показал, как гладкая непрерывная числовая линия, которая, как раньше считалось, скреплялась воедино клеем из бесконечно малых, может быть представлена в виде бесконечного множества рациональных и иррациональных чисел, никогда не соприкасающихся друг с другом попарно.

Все эти новшества были предназначены сугубо для специалистов и усваивались, мягко говоря, не без труда. (Собственно, так обстоят дела и сегодня, как скажет вам любой студент-первокурсник, которому на занятиях по матанализу пришлось продираться сквозь загадочные доказательства теорем о пределах, полные всяких «дельта-эпсилон».) Совокупно они позволяют сделать три фундаментальных вывода. Во-первых, они говорили об окончательном, как тогда казалось, изгнании бесконечно малого из ортодоксальной научной мысли. «Отпала необходимость предполагать, что такое существует», – заметил с явным облегчением Бертран Рассел. Во-вторых, они означали возвращение математики к евклидовой строгости и ее формальному отделению от физики после бурной эпохи открытий, когда они были практически неразличимы. В-третьих, они помогли преобразить господствующую в философии картину мира. Если бесконечно малого не существует, то, как заметил Рассел, теряют смысл идеи «следующего мига» и «состояния изменения». Природа становится статичной и прерывистой, поскольку нет никакого гладкого переходного элемента, позволявшего одному событию перетекать в другое. В несколько абстрактном смысле все перестало «держаться». Возникшее от этого общее ощущение онтологической прерывистости прослеживается и в культурных тенденциях к модернизму, о чем свидетельствует и пуантилизм Сера, и «хронофотографии» Мейбриджа, из которых он составлял первые прото-фильмы, и поэзия Рембо и Лафорга, и «серийная техника» Шёнберга, и романы Джойса.

Некоторая ностальгия по бесконечно малому сохранилась только у философов-одиночек. На рубеже веков французский философ Анри Бергсон утверждал, что новое «кинематографическое» восприятие перемен фальсифицировало наш дорефлексивный опыт, когда бесконечно малые моменты времени плавно перетекали один в другой. Американец Чарльз Пирс, один из основоположников прагматизма, тоже призывал придавать особое значение нашему интуитивному восприятию непрерывности. Пирс был категорически против «старомодного предубеждения против бесконечно малых величин» и утверждал, что субъективное «сейчас» имеет смысл, только если трактовать его как бесконечно малое. Между тем в мире математики бесконечно малое хоть и было изгнано из «высоколобой» науки, но сохранило популярность среди «низколобых» практиков: физики и инженеры по-прежнему находили в нем бесценный эвристический инструмент для рутинных расчетов, который при всей его якобы неаккуратности всегда приводил их к верному ответу, как и Ньютона.

Ведь несмотря на все строгости Аристотеля, Беркли и Рассела никто так и не смог формально доказать, что идея бесконечно малого логически противоречива. А с прогрессом в логике в начале XX века стало проступать новое понимание логической непротиворечивости и его отношения к истинности и существованию. Первопроходцем в этом был логик Курт Гёдель, уроженец Австрии. Сегодня Гёдель знаменит в первую очередь своей «теоремой о неполноте», доказанной в 1930 году, согласно которой, грубо говоря, никакая система аксиом не способна породить все математические истины. Однако за год до этого Гёдель защитил диссертацию и получил в ней результат, пожалуй, не менее важный, который известен как «теорема о полноте», что вызывает некоторую путаницу. У этой теоремы есть очень интересное следствие. Возьмите любой набор утверждений, сформулированный на язык