Интерстеллар: наука за кадром — страница 18 из 31

Двумерная брана и трехмерный балк


В 1844 году Эдвин Эбботт написал сатирический роман под названием «Флатландия». Хоть сатира на викторианскую культуру в этом романе и кажется старомодной, а отношение к женщинам – возмутительным, само место действия книги имеет прямое отношение к «Интерстеллар», и я очень ее вам рекомендую.


Рис. 22.1. Обложка первого издания «Флатландии»


Роман повествует о приключениях сущности, имеющей форму квадрата и живущей в двумерной вселенной – Флатландии. Квадрат посещает одномерную вселенную, называемую Лайнландией, нульмерную вселенную – Пойнтландию, и, что производит на него особо сильное впечатление, трехмерную вселенную – Спейсландию[67]. Кроме того, когда Квадрат живет во Флатландии, его посещает сферическая сущность из Спейсландии.

При нашей первой встрече с Кристофером Ноланом мы с радостью обнаружили, что оба знаем и любим роман Эбботта.

Представьте что вы, подобно Квадрату в романе Эбботта, – двумерная сущность, живущая в двумерной вселенной, напоминающей Флатландию. Ваша вселенная может быть поверхностью стола, или листком бумаги, или резиновой мембраной. В традициях современной физики я буду называть ее двумерной браной.

Получив хорошее образование, вы предполагаете существование трехмерного балка, в котором находится ваша брана, но вы в этом не уверены. Представьте свою радость, когда однажды вас посетит сфера из трехмерного балка. «Сущность из балка» – так вы могли бы ее называть.

Сначала вы не понимаете, что это сущность из балка, но понаблюдав за ней и хорошенько подумав, не находите иного объяснения. А наблюдаете вы следующее: внезапно, без предупреждения и непонятно откуда, на вашей бране возникает синее пятно (рис. 22.2 сверху слева). Пятно разрастается, превращаясь в синюю окружность, диаметр которой увеличивается до максимального (рис. 22.2 посередине слева), а затем снова сжимается в точку (рис. 22.2 снизу слева) и, наконец, полностью исчезает.


Рис. 22.2. Трехмерная сфера проходит через двумерную брану


Вы верите в принцип сохранения вещества: никакой объект не может возникнуть из пустоты, но этот – появился. Единственное найденное вами объяснение показано на правой половине рис. 22.2. Трехмерная сущность из балка – сфера – проходит через вашу брану. По мере этого вы наблюдаете в своей бране ее изменяющееся двумерное сечение. Сначала это сечение около «южного полюса» сферы, точка (рис. 22.2 сверху справа). Дойдя до экваториальной плоскости, оно расширяется до окружности максимального диаметра (рис. 22.2 посередине справа). И, наконец, у «северного полюса» оно опять сжимается в точку, после чего исчезает (рис. 22.2 снизу справа).

Представьте, что бы произошло, если бы человек (трехмерная сущность), живущий в трехмерном балке, прошел сквозь вашу двумерную брану. Что бы вы увидели?

Четырехмерные сущности, проходящие сквозь трехмерную брану

Допустим, наша Вселенная, с ее тремя пространственными и одним временным измерением, действительно находится в пятимерном балке (четыре пространственных измерения плюс одно временное). И допустим, есть «гиперсферические сущности», живущие в балке. Каждая такая сущность имела бы центр, а также поверхность, состоящую из всех равноудаленных от центра точек в четырех пространственных измерениях (к примеру, удаленных на 30 сантиметров). Поверхность сущности из балка обладала бы тремя измерениями, а ее внутренний объем – четырьмя.

Пусть эта гиперсферическая сущность из балка, путешествуя по балку в направлении «туда» или «обратно», пройдет через нашу брану. Что мы увидим? Ответ очевиден: мы увидим сферические сечения гиперсферы (рис. 22.3).


Рис. 22.3. Гиперсферическая сущность из балка проходит сквозь нашу брану: вид из браны


Сначала из ниоткуда возникнет точка (1). Она увеличится, став трехмерной сферой (2). Сфера вырастет до максимального диаметра (3), затем сожмется (4), уменьшится до точки (5) и исчезнет. Как вы думаете, что мы увидим, если четырехмерный человек из балка пройдет сквозь нашу брану? Чтобы рассуждать об этом, придется сначала представить себе, как четырехмерный человек – две ноги, туловище, две руки, голова – «должен выглядеть» в балке, в четырех измерениях, и на что будут похожи его сечения.

Природа сущностей из балка и их гравитация

и


Если сущности из балка вообще есть, то из чего они состоят? Определенно не из той же материи с атомным строением, что и мы, – атомы могут существовать лишь в трех пространственных измерениях, а не в четырех. То же можно сказать и о субатомных частицах, и об электрических и магнитных полях (см. главу 2), а также о силах, которые удерживают атомные ядра вместе.

Некоторые выдающиеся физики пытались понять, как ведет себя вещество, а также поля и силы, если наша Вселенная действительно является браной в многомерном балке. Эти попытки явственно приводили к выводу, что все известные людям частицы, все силы и все поля привязаны к нашей бране. За единственным исключением – за исключением гравитации и связанных с ней искривлений пространства – времени.

Возможно, существуют другие виды материи, и полей и сил, которые обладают четырьмя измерениями и существуют в балке. Но даже если они есть, их природа нам неведома. Мы можем строить домыслы, и порой именно этим физики и занимаются. Однако у нас нет данных наблюдений и экспериментов, которые могли бы послужить нам путеводной звездой. Подобные домыслы, выраженные языком формул, мы встречаем в «Интерстеллар» на досках в кабинете профессора Брэнда (см. главу 25).

Есть разумное, но лишь частично обоснованное предположение, гласящее, что если многомерные силы, поля и частицы существуют, мы никогда не сможем их почувствовать или увидеть. Когда сущность из балка пройдет сквозь нашу брану, мы не увидим, из чего она состоит. Сечения сущности из балка будут «прозрачны».

Но, с другой стороны, мы зафиксируем гравитацию сущности и порождаемые этой гравитацией искривления пространства – времени. Например, если в моем желудке появится гиперсферическая сущность из балка, обладающая достаточно сильным гравитационным притяжением, мышцы начнут сопротивляться этому притяжению, влекущему их к центру сферического сечения сущности из балка, и у меня скрутит живот. А если сечение сущности из балка появится на фоне разноцветной стены, искривление пространства может линзировать цветные клетки, как на рис. 22.4 (сверху).


Рис. 22.4. Сущность из балка, проходя сквозь нашу брану, искажает воспринимаемое нами изображение разноцветной стены


Если же сущность из балка будет вращаться, она может вовлечь пространство в вихревое движение, которое я смогу ощущать и видеть; см. рис. 22.4 снизу.

Сущности из балка в «Интерстеллар»


Все персонажи фильма уверены в, извините за тавтологию, существовании сущностей из балка, хоть и редко называют их так. Обычно персонажи говорят о сущностях из балка: «Они» – благоговейно, с большой буквы. Амелия Брэнд говорит Куперу: «Кем бы Они ни были, похоже, что Они заботятся о нас. Червоточина позволяет нам путешествовать к другим звездам, и появилась она в точности тогда, когда это нам понадобилось».

Одна из захватывающих идей, которую Кристофер Нолан заронил в умы зрителей: возможно, в действительности Они – это наши потомки, люди, которые в далеком будущем эволюционировали, обретя дополнительное измерение и перейдя в балк. В конце фильма Купер говорит ТАРСу: «Ты еще не понял, ТАРС? Они – это мы, и стараются помочь, так же как я старался помочь Мёрф». ТАРС отвечает: «Люди не могли создать тессеракт [по которому перемещается Купер, см. главу 29. – К. Т.]» «Пока нет, – отвечает Купер, – но однажды… Не мы, но люди, эволюционировавшие, вышедшие за пределы известных нам четырех измерений».

Купер, Брэнд и остальные члены экипажа «Эндюранс» никогда не ощущали и не видели действие гравитации наших потомков из балка или вызванные ею искривления и завихрения пространства. (Это, пожалуй, хорошая тема для продолжения фильма.) Однако Купер, перемещаясь через балк в тессеракте из главы 29, дотягивается до экипажа «Эндюранс» и до себя в прошлом через балк с помощью гравитации. Брэнд чувствует и видит его присутствие, и думает, что он – это Они.

23. Ограничение гравитации

Проблема гравитации в пяти измерениях


Если балк существует, его пространство должно быть искривленным. Не будь оно искривлено, гравитация подчинялась бы закону обратных кубов вместо закона обратных квадратов, и тогда Солнце не смогло бы удержать рядом свои планеты – они разлетелись бы в разные стороны.

Ладно-ладно, я не буду спешить и объясню подробнее. Вспомним (из главы 2), что силовые линии гравитационного поля Солнца (как и Земли и любых других сферических тел) устремлены к его центру и притягивают объекты к Солнцу в радиальном направлении (рис. 23.1). Сила гравитационного притяжения Солнца пропорциональна плотности силовых линий (количеству линий, проходящих через заданную площадь). А поскольку поверхности вложенных одна в другую сфер, через которые проходят линии, имеют два измерения, плотность линий уменьшается с увеличением радиуса сферы r как 1/r2, и так же уменьшается сила гравитации. Это ньютоновский закон обратных квадратов для гравитации.


Рис. 23.1. Силовые линии гравитационного поля вокруг Солнца


Теория струн утверждает, что в балке гравитация тоже описывается силовыми линиями. Если пространство балка не искривлено, то силовые линии гравитационного поля Солнца будут радиально распространяться наружу, в балк (рис. 23.2). Поскольку балк обладает дополнительным измерением (в «Интерстеллар» всего одним), есть не два, а три перпендикулярных измерения, в которых гравитация может распространяться. Следовательно, если балк существует и не искривлен, плотность силовых линий, а значит, и сила гравитации должны при удалении от Солнца уменьшаться как 1/r3, а не как 1/r2[68]. Солнечное притяжение, действующее на Землю, будет в 200 раз слабее, а действующее на Сатурн – в 2000 раз слабее. Этак Солнце не сможет удержать планеты рядом с собой, и они улетят прочь, в межзвездное пространство.


Рис. 23.2. Силовые линии гравитационного поля распространяются в балке радиально, если балк не искривлен. Пунктирные окружности изображены здесь лишь для наглядности (Перерисовка с иллюстрации из книги Лизы Рэндалл «Закрученные пассажи: Проникая в тайны скрытых размерностей пространства» [Рэндалл 2011].)


Однако планеты никуда не улетают, и их поведение однозначно показывает, что солнечная гравитация убывает как обратный квадрат расстояния. Отсюда следует неизбежный вывод: если балк существует, он должен быть искривлен таким образом, чтобы гравитация не могла распространяться в пятое измерение, в измерение «туда – обратно».

Может быть, пятое измерение свернуто?


Если бы измерение «туда – обратно» в балке было свернуто в узкий рулон, то гравитация не могла бы далеко распространиться в балк и закон обратных квадратов был бы восстановлен.

На рис. 23.3 этот случай показан для крохотной частицы, находящейся в центре синего диска. Два пространственных измерения на этом рисунке опущены, показано лишь одно измерение нашей браны (пусть это будет «север – юг»), а также измерение балка «туда – обратно». Рядом с частицей, внутри синего диска, силовые линии распространяются в измерении «туда – обратно» так же, как и в измерении «север – юг», поэтому (если восстановить отсутствующие на рисунке измерения) сила гравитации там подчиняется закону обратных кубов. Однако из-за того, что измерение «туда – обратно» свернуто, вне синего диска силовые линии проходят параллельно нашей бране. Они уже не распространяются «туда – обратно» – ньютоновский закон обратных квадратов восстановлен.


Рис. 23.3. Если измерение «туда – обратно» (желтая линия) свернуто, тогда за пределами синего диска силовые (красные) линии гравитационного поля частицы проходят параллельно нашей бране


Изучающие квантовую гравитацию физики считают, что такова судьба всех дополнительных измерений (кроме, быть может, одного или двух): они свернуты в микроскопических масштабах, что препятствует «утечке» гравитации. В «Интерстеллар» Кристофер Нолан игнорирует эти свернутые измерения, сосредоточиваясь лишь на одном измерении балка, которое не свернуто. Это и есть его пятое измерение, «туда – обратно».

Почему бы измерению «туда – обратно» в фильме не быть свернутым? Для Криса ответ очевиден: масштабы свернутого балка микроскопичны – слишком малы, чтобы быть местом действия увлекательного научно-фантастического фильма. Верно это и для Купера, путешествующего через балк в тессеракте – тессеракту нужно куда больше пространства, чем может предоставить свернутое измерение.

«Туда – обратно»: искривление анти-де-Ситтера


В 1999 году Лиза Рэндалл из Принстонского университета и Массачусетского технологического института вместе с Раманом Сандрамом из Бостонского университета (рис. 23.4) придумали еще один способ ограничить распространение силовых линий гравитационного поля в балке: в балке может иметь место так называемое искривление анти-де-Ситтера[69]. Причиной этого искривления могут служить «квантовые флуктуации полей балка». Но они не относятся к тому, о чем я хочу рассказать сейчас, поэтому я опущу объяснения[70]. Пока что достаточно сообщить, что это весьма естественный механизм образования искривлений. Однако само искривление анти-де-Ситтера[71] (обозначается AdS) вряд ли покажется вам естественным. Скорее ровно наоборот.


Рис. 23.4. Раман Сандрам (род. 1964) и Лиза Рэндалл (род. 1962)


Представьте, что вы микроб, живущий в микроскопическом тессеракте (см. главу 29). Вы путешествуете в своем тессеракте, покидая брану перпендикулярно ей (направление вверх на рис. 23.5). И, положим, у вас есть приятель-микроб, который тоже путешествует перпендикулярно бране. Когда вы с приятелем покидаете брану, вы находитесь на расстоянии один километр друг от друга. Хотя вы оба перемещаетесь в точности перпендикулярно бране, из-за AdS-искривления расстояние между вами резко сокращается. Когда вы поднимаетесь над браной на десятую долю миллиметра (толщина человеческого волоса), расстояние между вами сокращается в десять раз: от километра до 100 метров. Следующие 0,1 миллиметра сокращают расстояние еще в 10 раз, до 10 метров, следующие – до метра, и т. д.


Рис. 23.5. AdS-искривление балка


Такое сокращение расстояний параллельно нашей бране нелегко себе представить. Я не знаю, как изобразить это лучше, чем на рис. 23.5. И у этого феномена есть удивительные особенности.

AdS-искривление может решить загадку, известную под названием «проблема калибровочной иерархии», – но рамки книги не позволяют рассказать об этом сколь-нибудь подробно[72]. Что же касается гравитации, из-за сокращения расстояний при AdS-искривлении, силовые линии гравитационного поля могут распространяться лишь на малые области над и под браной. Вблизи браны, на расстоянии до 0,1 миллиметра, силовые линии безнаказанно распространяются в трех перпендикулярных измерениях, отчего гравитация подчиняется здесь закону обратных кубов. Однако дальше 0,1 миллиметра от браны силовые линии изгибаются параллельно бране, распространяясь всего в двух перпендикулярных измерениях, вследствие чего гравитация подчиняется привычному нам закону обратных квадратов[73].


Рис. 23.6. Если в балке происходит AdS-искривление, силовые линии гравитационного поля изгибаются, выстраиваясь параллельно бране, поскольку пространство, в котором они могут распространяться над браной, ограничено (Перерисовка с иллюстрации из [Рэндалл 2011].)


AdS-бутерброд: в балке становится просторно


К сожалению, из-за стремительного сокращения параллельных бране расстояний по мере отдаления от нее объем балка над и под браной слишком тесен для Купера с его тессерактом, да и вообще для любой человеческой деятельности. Я осознал эту проблему еще в 2006 году, когда «Интерстеллар» был лишь в проекте, и быстро нашел выход (для Кип-версии): ограничим AdS-искривление тонким слоем пространства вблизи нашей браны, соорудив этакий «бутерброд». Для этого поместим еще две браны – назовем их ограничительными – рядом с нашей, как на рис. 23.7. В бутерброде между ограничительными бранами балк подвержен AdS-искривлению. Однако вне бутерброда балк совершенно не искривлен, что дает предостаточно места для научной фантастики с приключениями в балке.

.

Рис. 23.7. AdS-бутерброд с двумя ограничительными бранами. AdS-слой между бранами обозначен светло-серым


Насколько толстым должен быть бутерброд? Достаточно толстым, чтобы «укладывать» силовые линии гравитационного поля, исходящие из нашей браны, вдоль нее и удерживать их в таком положении (дабы в нашей бране гравитация подчинялась закону обратных квадратов). Но не толще, поскольку это вызовет увеличение общего перпендикулярного сжатия, что станет препятствием для приключений в балке. (Представьте, что вся наша Вселенная, если смотреть снаружи AdS-слоя, сжата до размеров булавочной головки!) Нужная толщина бутерброда составит около трех сантиметров, так что при путешествии от нашей браны к ограничительной бране параллельные нашей бране расстояния сожмутся в 1015 (тысячу триллионов) раз.

В Кип-версии Гаргантюа находится в дальнем участке наблюдаемой Вселенной, на расстоянии примерно 10 миллиардов световых лет от Земли. Купер в тессеракте проникает сквозь AdS-слой, из недр Гаргантюа в балк. Там расстояние до Земли равно 10 миллиардам световых лет, деленным на тысячу триллионов, что примерно равно расстоянию между Солнцем и Землей, или одной астрономической единице (1 а. е.), см. рис. 23.7. Затем Купер преодолевает это расстояние в 1 а. е. через балк, параллельно нашей бране, чтобы достичь Земли и встретиться с Мёрф, см. рис. 29.4.

Внимание! Внимание! Бутерброд нестабилен!


В 2006 году я воспользовался законами теории относительности, чтобы вывести математическое описание AdS-слоя и ограничительных бран. Поскольку прежде я не имел дела с теорией относительности в пяти измерениях, я попросил Лизу Рэндалл оценить мои выкладки. Лиза быстро их просмотрела, а затем сообщила мне кое-какие новости: как хорошие, так и плохие.

Хорошие новости: моя идея AdS-бутерброда уже была изобретена шесть лет назад; это сделала Рут Грегори из Даремского университета в Англии совместно с Валерием Рубаковым и Сергеем Сибиряковым из Объединенного института ядерных исследований в России. Выходит, я неплохо себя проявил в своем первом математическом вторжении в балк и заново открыл что-что стоящее.

Плохие новости: Эдвард Виттен (Принстон) и другие показали, что AdS-бутерброд нестабилен! Ограничительные браны находятся под давлением, подобно игральной карте, которую держат между указательным и большим пальцем (рис. 23.8). Карта гнется, а если сжать посильнее – коробится. Также и ограничительные браны будут выгибаться, пока не столкнутся с нашей браной (нашей Вселенной), уничтожив ее. Уничтожение целой Вселенной! Хорошенькое дело!


Рис. 23.8. Игральная карта, если сжимать ее с краев, гнется, а затем коробится


Однако я могу представить несколько способов спасти нашу Вселенную, если она действительно находится посередине AdS-бутерброда (в чем я очень сомневаюсь), – выражаясь языком физиков, несколько способов «стабилизации ограничительных бран».

Согласно Кип-версии, профессор Брэнд, работая с уравнениями теории относительности, заново открывает AdS-бутерброд (так же, как это сделал я); см. его доску на рис. 3.6. Вопрос стабилизации ограничительных бран становится затем частью работы профессора по исследованию и укрощению гравитационных аномалий. В фильме показано шестнадцать досок в кабинете профессора Брэнда, математические выкладки на которых отражают его усилия.

Путешествие сквозь AdS-слой


AdS-искривление порождает в AdS-слое приливные силы, которые по человеческим стандартам просто чудовищны. Каждой сущности из балка, проходящей через этот слой по пути в нашу брану, придется иметь дело с этими силами. Поскольку нам неизвестно, из какого вещества (вещества с четырьмя пространственными измерениями) состоят сущности из балка, мы не можем знать, явится ли это для них проблемой. В научной фантастике этот вопрос остается на совести писателей и сценаристов.

Но для Купера, путешествующего в тессеракте (см. главу 29), все не так просто, ведь в Кип-версии ему необходимо пройти через AdS-слой. Поэтому нужно чтобы тессеракт либо защищал его от действующих в AdS-слое огромных приливных сил, либо отодвигал AdS-слой прочь с дороги – иначе Купера растянет в макаронину[74].

Ограничивая гравитацию, AdS-слой регулирует ее силу. В «Интерстеллар» мы видим колебания гравитации – возможно, они вызваны флуктуациями в AdS-слое. Эти флуктуации – гравитационные аномалии – играют ключевую роль в фильме. Поговорим теперь о них.

24. Гравитационные аномалии