В «Интерстеллар» Купер и ТАРС ищут внутри Гаргантюа квантовые данные – данные, которые помогли бы профессору решить его уравнение и эвакуировать человечество с Земли. Они считают, что эти данные должны быть в сингулярности, которая находится внутри Гаргантюа – в «мягкой сингулярности», как выражается Ромилли. Что же такое квантовые данные? Чем они способны помочь профессору? И что такое мягкая сингулярность?
Приоритет квантовых законов
Наша Вселенная в основе своей квантовая. Под этим я имею в виду, что всё в ней флуктуирует, то есть случайным образом колеблется. Хотя бы чуть-чуть, но абсолютно всё!
Когда мы используем высокоточные инструменты для изучения крохотных объектов, мы видим сильные флуктуации. Положение электрона в атоме флуктуирует так быстро и так беспорядочно, что мы не можем знать, где находится электрон в тот или иной момент. И флуктуации электрона ограничиваются лишь размерами атома. Поэтому законы квантовой физики имеют дело не с конкретным положением электрона, а с вероятностями его положения (рис. 26.1).
Рис. 26.1. Плотность вероятности местонахождения электрона для двух разных атомов водорода. Вероятность велика для белых областей, меньше для красных и очень мала для черных. (3, 0, 0) и (3, 2, 0) – наборы квантовых чисел, характеризующие эти состояния электрона
Наблюдая с помощью высокоточных инструментов за большими объектами, мы тоже видим флуктуации. Но флуктуации больших объектов крайне малы. В детекторах гравитационных волн ЛИГО (см. главу 16) положения 40-килограммовых зеркал[81] определяются с помощью лазерных лучей. Положения зеркал флуктуируют, но величина этих флуктуаций намного – в десять миллиардов раз! – меньше размеров атома (рис. 26.2). Тем не менее лазерные лучи ЛИГО уже в течение нескольких лет отслеживают эти флуктуации. (Конструкция ЛИГО, однако, не позволяет флуктуациям мешать измерению гравитационных волн. Мы с моими учениками успели это доказать.)
Рис. 26.2. 40-килограммовое зеркало, подготовленное для установки в ЛИГО. Его положение квантовомеханически флуктуирует – очень-очень слабо, на одну десятимиллиардную от диаметра атома
Поскольку объектам человеческих и больших масштабов присущи лишь крохотные квантовые флуктуации, физики зачастую их не учитывают. Игнорирование флуктуаций сильно облегчает формулы и упрощает расчеты.
Если мы возьмем обычные квантовые законы, не учитывающие гравитацию, а затем отбросим флуктуации, мы получим законы ньютоновской физики – законы, которые в течение нескольких последних столетий использовались для описания планет, звезд, мостов и бильярдных шаров (см. главу 3).
Если же взять законы квантовой гравитации (о которых мы знаем пока немного) и пренебречь флуктуациями, то должны получиться законы теории относительности (которые изучены куда лучше). Флуктуации, которыми мы пренебрежем, – это, например, пена из крохотных флуктуирующих червоточин («квантовая пена», которой пронизано все пространство; см. рис. 26.3 и главу 14)[82]. Без учета флуктуаций законы теории относительности точно описывают искривление пространства и времени вблизи черной дыры и замедление времени на Земле.
Рис. 26.3. Квантовая пена. Есть некоторая вероятность (скажем, 0,4), что пена будет иметь форму а, другая вероятность (скажем, 0,5) – что b, и еще одна (0,1) – что с (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Все это время мы вели к главному: если бы профессору Брэнду удалось открыть законы квантовой гравитации и для балка, и для нашей браны, тогда, исключив из этих законов флуктуации, он мог бы найти точную форму своего уравнения (см. главу 25). И узнал бы причину гравитационных аномалий и как ими можно управлять – то есть как можно их использовать для эвакуации человечества с Земли.
Профессор (в Кип-версии) хорошо это понимает. Кроме того, он знает, откуда можно получить законы квантовой гравитации. Из сингулярностей.
Сингулярности: область квантовой гравитации
Источник сингулярности – это место, где искривление пространства и искривление времени возрастают неограниченно, где они становятся бесконечно большими.
Если мы представим, что искривленное пространство нашей Вселенной подобно волнующейся поверхности океана, тогда источник сингулярности похож на верхушку волны, которая вот-вот обрушится вниз, а недра сингулярности подобны бурлению разбившейся волны (рис. 26.4). Гладкая волна – перед тем, как она разобьется, – подчиняется «гладким» законам физики, таким как законы теории относительности Эйнштейна. Бурун требует иных законов – таких, как законы квантовой физики с их квантовой пеной.
Рис. 26.4. Сингулярность как верхушка океанской волны, которая вот-вот обрушится
Сингулярности лежат в сердцевинах черных дыр. Законы теории относительности однозначно говорят нам об этом, хоть они и не могут объяснить, что происходит внутри сингулярностей. Для этого предназначены законы квантовой гравитации.
В 1962 году я перешел из Калтеха (где окончил бакалавриат) в Принстонский университет, чтобы учиться на доктора физических наук. Я выбрал именно Принстон, потому что там преподавал Джон Уилер. Ведь Уилер тогда был флагманом в теории относительности.
Рис. 26.5. Джон Уилер в 1971 году читает лекцию о сингулярностях, черных дырах и Вселенной
Одним сентябрьским днем я с трепетом постучал в дверь кабинета профессора Уилера. Это была моя первая встреча с этим великим человеком. Широко улыбаясь, он приветствовал меня, провел внутрь и сразу же – как будто я был его достославным коллегой, а не полнейшим новичком – начал разговор о тайнах звездных коллапсов. Коллапсов, в результате которых образуются черные дыры с сингулярностями в их сердцевине. В этих сингулярностях, утверждал он, «вершится пылкий брак законов теории относительности с законами квантовой физики». Плоды этого брака, говорил Уилер, законы квантовой гравитации, в сингулярностях расцветают полным цветом. Если бы мы могли разобраться в сингулярностях, мы бы узнали законы квантовой гравитации. Сингулярности – это розеттский камень[83] для расшифровки квантовой гравитации.
После этой персональной лекции я стал новообращенным. И множество других физиков после открытых лекций и статей Уилера встали на путь познания сингулярностей и законов квантовой гравитации. И этот путь до сих пор не пройден. Пока он привел нас к теории суперструн, которая, в свою очередь, привела к утверждению, что наша Вселенная – это брана, находящаяся в многомерном балке (см. главу 21).
Голые сингулярности?
Было бы чудесно, если бы мы могли найти или создать сингулярность вне черной дыры – сингулярность, которая не скрывалась бы за горизонтом событий. Голую сингулярность. Тогда задача профессора Брэнда была бы куда проще. Он мог бы извлечь необходимые квантовые данные из этой голой сингулярности прямо у себя в лаборатории.
В 1991 году мы с Джоном Прескиллом поспорили с нашим другом Стивеном Хокингом о голых сингулярностях. Прескилл – профессор в Калтехе, один из лучших в мире специалистов в области квантовой информации. Стивен – тот самый «парень на кресле-каталке», который успел мелькнуть в «Звездном пути», «Симпсонах» и «Теории Большого взрыва». А еще он один из величайших гениев нашего времени. Мы заключили пари: Джон и я считали, что законы физики допускают существование голых сингулярностей. Стивен утверждал, что нет (рис. 26.6).
Рис. 26.6. Наше пари насчет голой сингулярности
Поскольку Стивен Хокинг твердо верит, что голые сингулярности – ересь и что они должны быть запрещены законами классической физики, и поскольку Джон Прескилл и Кип Торн считают голые сингулярности квантовыми гравитационными объектами, которые могут существовать, неприкрытые горизонтами, открытые взорам всей Вселенной, Хокинг предлагает, а Прескилл и Торн принимают пари со ставкой 100 фунтов стерлингов против 50 фунтов стерлингов на то, что если к любому типу классического вещества или поля, неспособному быть сингулярным в плоском пространстве – времени, применить общую теорию относительности посредством классических уравнений Эйнштейна, результатом никогда не будет голая сингулярность.
Проигравший вознаграждает победившего одеждой, дабы прикрыть его наготу. Одежда должна быть украшена соответствующей надписью, выражающей признание правоты победителя.
Приписка от руки: Признаю техническое поражение. 5 февраля 1997 г. Стивен У. Хокинг
Никто из нас не думал, что спор разрешится так быстро. Всего через пять лет Мэттью Чоптюк, докторант Техасского университета, прогнал на суперкомпьютере моделирование, которое, как он надеялся, выявит новые, неожиданные свойства законов физики, – и попал в яблочко. Он моделировал схлопывание гравитационной волны[84]. Если волна была слаба, то она схлопывалась и затем рассеивалась. Если сильна, то схлопывалась и образовывала черную дыру. Но когда сила волны была очень тонко «настроена» на промежуточное значение, волна вызывала нечто вроде кипения пространства и времени. Это кипение порождало исходящие гравитационные волны все меньшей и меньшей длины. И в конце концов там образовывалась бесконечно малая голая сингулярность (рис. 26.7).
Рис. 26.7. Сверху: Мэттью Чоптюк. В центре (a): схлопывающаяся гравитационная волна. Снизу (b): кипение, вызванное волной, и голая сингулярность в центре увеличительного стекла
Впрочем, такая сингулярность не может возникнуть сама собой – необходимые для этого условия несвойственны естественным процессам. Однако сверхразвитая цивилизация могла бы, тонко отрегулировав схлопывание волны, создать такую сингулярность искусственно, а затем «выпытать» у нее законы квантовой гравитации.
Ознакомившись с моделированием Чоптюка, Стивен признал, как он выразился, «техническое поражение» (см. рис. 26.6). Он счел тонкую настройку волны жульничеством. Стивен хотел знать, могут ли голые сингулярности возникать естественным путем, так что мы возобновили наше пари в новой формулировке: сингулярность должна появляться без необходимости тонкой настройки. Тем не менее публичное заявление Стивена (рис. 26.8) было большим событием, и о нем даже написали на первой странице «Нью-Йорк Таймс».
Рис. 26.8. Хокинг официально признает победу Прескилла и Торна во время своей лекции в Калтехе, 1997
Несмотря на все пари, я сомневаюсь, что во Вселенной существуют голые сингулярности. В «Интерстеллар» доктор Манн твердо уверен, что «законы природы не допустят голой сингулярности», да и профессор Брэнд ни разу о такой возможности не упоминает. Вместо этого профессор обращает все свое внимание на сингулярности внутри черных дыр. В них, считает профессор, единственная надежда на познание законов квантовой гравитации.
БХЛ-сингулярность
Во времена Уилера (1960-е) мы думали, что сингулярность черной дыры похожа на сужение пространства в точку, где материя сгущается, пока не становится бесконечно плотной и не исчезает. И я, вплоть до этого момента, изображал в книге сингулярность черной дыры именно так (см., например, рис. 26.9).
Рис. 26.9. Фантасмагорическое изображение нескольких черных дыр с сингулярностями на их сужающихся концах (Фрагмент рисунка 4.5.)
С тех пор математические вычисления по законам теории относительности показали, что такие сужающиеся сингулярности нестабильны. Чтобы создать такую сингулярность внутри черной дыры, потребуется тонкая настройка. И если что-нибудь сингулярность хотя бы слегка потревожит, например если что-то упадет в черную дыру, она разительно изменится. Чем же она станет?
В 1971 году три российских физика – Владимир Белинский, Исаак Халатников и Евгений Лифшиц – предложили ответ на этот вопрос в виде пространных и сложных вычислений. А в 2000-х годах благодаря развитию компьютерного моделирования их ответ подтвердил Дэвид Гарфинкль из Оклендского университета. Эти стабильные сингулярности теперь называют БХЛ – в честь Белинского – Халатникова – Лифшица.
БХЛ-сингулярности хаотичны. Исключительно хаотичны. И опасны. Дьявольски опасны.
На рис. 26.10 я изобразил искривление пространства снаружи и внутри быстровращающейся черной дыры. Внизу находится БХЛ-сингулярность. Если вы упадете в черную дыру, сначала у нее внутри все будет спокойно, быть может, даже приятно. Но по мере приближения к сингулярности пространство вокруг вас начнет хаотически растягиваться и сжиматься. И приливные силы начнут – хаотически же – растягивать и сжимать вас. Сначала растяжения и сжатия будут небольшими, но вскоре они усилятся и, наконец, станут сверхсильными. Вашу плоть растерзает в клочья. А затем и атомы, из которых состояло ваше тело, изуродует так, что родная мать не узнает.
Рис. 26.10. Искривленное пространство вокруг быстровращающейся черной дыры наподобие Гаргантюа с БХЛ-сингулярностью внизу. Хаотические растяжения и сжатия вблизи сингулярности изображены не точно, а умозрительно
Все это, включая хаотичность, следует из законов теории относительности. Именно это предсказали российские физики Б., Х. и Л. Чего они не могли предсказать и чего не может предсказать никто по сей день, так это какая судьба ожидает ваши угодившие в БХЛ-сингулярность атомы и субатомные частицы, когда мильон хаотических терзаний перейдут в бесконечное крещендо. Судьба ваших атомарных останков ведома лишь законам квантовой гравитации. Так или иначе, вы сами будете давно уже мертвы, без шансов добыть какие-либо квантовые данные и спастись.
Я пометил этот раздел значком (обоснованное предположение), поскольку у нас нет полной уверенности, какие именно сингулярности скрываются внутри черных дыр – БХЛ или нет. Законы теории относительности допускают существование БХЛ-сингулярностей, Гарфинкль подтвердил это с помощью компьютерного моделирования. Но чтобы подтвердить, что характерные для БХЛ-сингулярностей чудовищные растяжения и сжатия действительно происходят в черных дырах, необходимо более сложное моделирование. Я почти уверен, что в результате такого моделирования станет ясно: да, так все и есть. Но не могу утверждать это наверняка.
Падающие и вылетающие сингулярности
В восьмидесятых годах мы с моими коллегами-физиками были вполне уверены (в рамках обоснованного предположения), что в черной дыре находится всего одна сингулярность и что это БХЛ-сингулярность. Мы ошибались.
В 1991 году Эрик Пуассон и Вернер Израэль из Альбертского университета в Канаде, работая с математическим аппаратом теории относительности, обнаружили вторую сингулярность – сингулярность, растущую по мере того, как стареет черная дыра, и порожденную экстремальным замедлением времени внутри дыры.
Если вы упадете во вращающуюся черную дыру наподобие Гаргантюа, вслед за вами неизбежно упадет еще много чего: газ, пыль, свет, гравитационные волны и т. д. Для меня, стороннего наблюдателя, все это будет опускаться в дыру в течение миллионов или миллиардов лет. Но на ваш взгляд, взгляд изнутри дыры, это займет несколько секунд, а то и меньше – из-за экстремального (по сравнению с моим) замедления вашего времени. Относительно вас то, что попадет в дыру за вами следом, образует тонкий слой и будет падать внутрь, прямо к вам, со световой или околосветовой скоростью. Этот слой будет порождать внушительные приливные силы, искажающие пространство, и если он столкнется с вами, вам тоже достанется.
Эти приливные силы будут расти до бесконечности, порождая «падающую сингулярность» (рис. 26.11)[85], подчиняющуюся законам квантовой гравитации. Однако, как выяснили Пуассон и Израэль, приливные силы растут так стремительно, что если вы с ними встретитесь, они деформируют вас лишь в некоторой конечной степени – а затем вы достигнете сингулярности. Это объясняет график на рис. 26.12, где показано ваше общее растяжение вдоль направления верх – низ и сжатие в направлениях север – юг и восток – запад в зависимости от времени. Когда вы встретитесь с сингулярностью, ваши общие растяжение и сжатие будут конечны, но скорости, с которыми вас растягивает и сжимает (крутизна трех кривых), будут бесконечны. Это действие бесконечных приливных сил, признака сингулярности.
Рис. 26.11. Падающая сингулярность, порожденная всем тем, что падает в черную дыру (разноцветные ободки) вслед за вами
Рис. 26.12. Ваши общие растяжение и сжатие, когда на вас опускается падающая сингулярность
Поскольку ваше тело подверглось лишь конечным общим растяжению и сжатию, возможно, что, войдя в сингулярность, вы останетесь живы (возможно, но, на мой взгляд, маловероятно). В этом смысле падающая сингулярность гораздо «мягче» БХЛ-сингулярности. Но если вы и уцелеете, снова только законам квантовой гравитации ведомо, что случится с вами дальше.
В 1990-х и 2000-х годах мы, физики, думали, что это всё – БХЛ-сингулярность, возникшая при рождении черной дыры, и падающая сингулярность, которая вырастает позже. И больше ничего.
Но затем в конце 2012 года, когда Кристофер Нолан вел переговоры насчет работы над «Интерстеллар», Дональд Марольф (Калифорнийский университет в Санта-Барбаре) и Амос Ори (Технион в Хайфе, Израиль) открыли третью сингулярность. Разумеется, открыли они ее в результате углубленного изучения законов теории относительности, а не увидев в телескоп. Странно даже, что эту сингулярность не открыли раньше – настолько все очевидно. Это «вылетающая сингулярность», которая, как и падающая, растет по мере старения черной дыры. Источник ее возникновения – то, что упало в черную дыру прежде вас (газ, пыль, свет, гравитационные волны и прочее); см. рис. 26.13. Малая часть всего этого будет рассеиваться вверх, по направлению к вам, рассеиваться из-за искривления пространства и времени – примерно так же, как солнечный свет рассеивается, когда проходит сквозь изогнутую, гладкую океанскую волну, формируя для наших глаз ее изображение.
Рис. 26.13. Вылетающая сингулярность, порожденная рассеянием того, что упало в черную дыру до вас, и падающая сингулярность, порожденная тем, что упало в дыру вслед за вами. Вы находитесь между этими сингулярностями. К наружным областям черной дыры и к ее БХЛ-сингулярности у вас доступа нет
Из-за экстремального замедления времени в черной дыре рассеянные газ, пыль и т. д. уплотняются, формируя тонкий слой, который напоминает ударную волну. Гравитация этого слоя порождает приливные силы, которые бесконечно возрастают, образуя вылетающую сингулярность. Но приливные силы этой сингулярности, так же как и падающей, «мягкие»: они нарастают так быстро и внезапно, что, достигнув сингулярности, вы испытаете конечную, а не бесконечную общую деформацию.
В «Интерстеллар» Ромилли рассказывает Куперу о мягких сингулярностях: «Есть предложение насчет твоего обратного пути [с планеты Манн. – К. Т.]. Заглянем напоследок в черную дыру. Гаргантюа – старая вращающаяся черная дыра. То, что мы зовем мягкой сингулярностью [точнее, то, что ее содержит. – К. Т.]». «Мягкой?» – спрашивает Купер. «Ну, не очень. Но ее приливная гравитация настолько шустрая, что объект, быстро преодолевший горизонт, может уцелеть». Позже Купер, вдохновившись этим разговором и заинтересовавшись поисками квантовых данных, бросается в Гаргантюа (см. главу 28). Это смелый поступок. Купер не может знать заранее, уцелеет ли он. Известно это лишь законам квантовой гравитации. Или сущностям из балка…
Итак, мы заложили «экстремальнофизический» фундамент для кульминационных сцен «Интерстеллар». Что же, давайте перейдем к кульминации.