Мате угрюмо оглядел стройный фронт корешков. Попробуй отыщи здесь что-нибудь!
— Ничего, ничего, — бодро возразил Фило, — привыкайте к новым формам жизни. И имейте в виду: это только начало! У вас масса ненужных вещей. Зачем вам, например, этот буль?
Услыхав свое имя, Буль поднял голову и подошел к Фило.
— Нет, нет, дружище, — улыбнулся тот, опасливо кладя ему руку на спину, — я не про тебя, а про тот исколотый циркулем столик. Он, представь себе, тоже называется булем. По имени французского художника-мебельщика времен Людовика Четырнадцатого. Замысловатая мебель Буля давно уже стала музейной редкостью. Вот и отдать бы столик в какой-нибудь музей — там его приведут в порядок и не станут употреблять в качестве чертежной доски… Да, Мате, уж не в честь ли этого Буля вы окрестили вашего пса?
Мате сердито фыркнул. Глупости! Буль — всего-навсего первая половина слова «бульдог». А если уж говорить по совести, собака получила имя в честь Булевой алгебры.
Фило шутливо схватился за голову. Не было печали! Мало ему обычной алгебры, так нет — есть еще какая-то Булева…
— Не какая-то, — строго поправили его. — Алгебра логики. Ее изобрел в девятнадцатом веке англичанин Джордж Буль.
Фило насторожился: одного Джорджа Буля он уже знает. Это отец известной писательницы Войнич. Автора бессмертного «Овода».
— Если так, значит, мы с вами говорим об одном и том же человеке, — сказал Мате. — Вот только относимся к нему по-разному. Для вас Буль — отец известной сочинительницы Войнич, а для меня Войнич — дочь выдающегося, хоть и неизвестного, ученого Буля.
— Выдающийся и неизвестный… Так не бывает.
— Бывает, — упрямо сказал Мате. — Слава приходит к людям по-разному. К одним — сразу, к другим — через многие века.
— Но что он такое сделал, ваш Буль?
— Написал «Математическое исследование логики», где логические рассуждения выражены алгебраическими формулами. С помощью буквенных обозначений.
Фило просто из себя вышел: что за дикая выдумка!
— Не такая уж дикая, как вам кажется, — возразил Мате. — Она приходила в голову и другим ученым. В конце тринадцатого века ее проповедовал итальянский отшельник Лу́ллий, но безуспешно. Один Джордано Бруно воздавал ему должное. В семнадцатом веке та же идея занимала великого немецкого математика Ле́йбница. Но и его соображения по этому поводу прозябали в неизвестности более двухсот лет.
— Но почему ж тогда эту алгебру называют Булевой? — возмутился Фило. — Ведь Буль, насколько я понимаю, всего лишь последователь Луллия и Лейбница.
— Не думаю. Скорее всего, мысль исследовать логику с помощью алгебры пришла ему в голову совершенно самостоятельно. Вы ведь уже знаете, что в науке так случается. И кроме того, то, что было наброском у Луллия и Лейбница, превратилось в завершенную теорию у Буля.
Фило иронически побарабанил пальцами по ручке кресла.
— Еще одна теория без применения.
— Нет, это невыносимо! — взвился Мате. — Сто́ит ли мыкаться с вами по средневековым базарам и проваливаться в кроличьи ямы, если вы не можете понять, что открытий без применения не бывает. Возьмите числа Фибоначчи… Разве не пошли они, в конце концов, в ход?
— Но когда? Через семь веков!
— До чего все-таки разные у нас взгляды! — с сердцем воскликнул Мате. — Для вас важно, что через СЕМЬ ВЕКОВ, а для меня, что ПРИГОДИЛИСЬ. Впрочем, Булю повезло. Его изобретение пролежало без дела не более ста лет. И теперь алгебра логики — одна из самых действенных научных теорий современности. Достаточно сказать, что на ней основана кибернетика…
— Не увлекайтесь, — перебил Фило, — нам с вами о кибернетике толковать рано.
— Ваша правда. Я и забыл, что на нашей совести несколько неразобранных задач.
Кофе с математикой
— Ну-с, с чего начнем? — спросил Фило, потирая руки.
— Я думаю, с кофе, — неожиданно заявил Мате. — У меня отличная кофеварка. Обратите внимание: собственная конструкция!
Толстяк подозрительно оглядел нескладный гибрид алюминиевой кастрюльки и электрочайника, от которого тянулся провод к разбитой фарфоровой розетке. Но кофе, против ожиданий, оказался превосходным, и лакомка Фило дал себе слово непременно выведать секрет его приготовления.
Тут он обратил внимание на необычной формы пятиугольную чашку, и мысли его сами собой перенеслись к задаче магистра Теодора. Некоторое время интерес к кофе боролся в нем с интересом к математике, но потом ему пришло в голову, что пить кофе и решать задачи можно одновременно. Он поделился своим открытием с Мате, и тот без лишних слов приступил к доказательству.
— Так вот, — сказал Мате, открывая неизбежный блокнот, — требуется вписать в квадрат ABCD равносторонний пятиугольник таким образом, чтобы одним из углов его был угол квадрата. — Он начертил квадрат. — Прежде всего проведем диагональ квадрата BD. Теперь на глазок впишем в квадрат равносторонний пятиугольник BEgFK так, чтобы диагональ BD была его осью симметрии. Сторону квадрата обозначим буквой а, сторону пятиугольника, естественно, через х — ведь именно она-то нам и неизвестна. Таким образом, АК = а — x; KF=x; AF = a — FD. Но FD есть гипотенуза равнобедренного прямоугольного треугольника FLD, катеты которого равны х/2. Теперь соблаговолите определить, чему равна гипотенуза FD.
Фило довольно бойко отрапортовал, что, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. А раз так, значит, гипотенуза
— Отлично, — сказал Мате. — Стало быть, AF = а — x√2/2. Теперь все стороны треугольника AKF выражены у нас через искомое число х: KF = x; АК = а — х; и, наконец, AF = а — x√2/2. Снова обратимся к теореме Пифагора и получим, что KF2 = AK2 + AF2, то есть х2 = (а — х)2 + (а — x√2/2)2
— Что-то вроде квадратного уравнения, — сообразил Фило.
— Вот-вот. Надо лишь привести его в приличный вид.
Мате раскрыл скобки и перенес все члены уравнения в левую часть равенства:
— Решив уравнение по обычной формуле, — продолжал он, — получим:
— Э, нет, — заартачился Фило, — перед большим корнем полагаются два знака: плюс и минус. А вы написали только минус…
— Замечание верное, но ведь мы с вами не отвлеченное квадратное уравнение решаем, а ищем вполне конкретную сторону пятиугольника. А она, если вдуматься, никак не может быть больше стороны квадрата. Так что на сей раз хватит с вас и одного минуса.
— Невелика выгода. Ответ у вас все равно некрасивый: корень на корне и корнем погоняет.
Мате засмеялся. Этот Фило определенно делает успехи! Одной правильности ему уже мало. Что ж, придется предложить ответ поизящнее. Такой, например: если принять, что корень из двух приближенно равен 1,41, то х — также приближенно — равен 0,65a.
— Совсем другое дело! — сказал Фило. — Но там, между прочим, были еще две геометрические задачи.
— Благодарю за напоминание. Только теперь ваша очередь решать.
Фило обомлел. От него требуют самостоятельности?
— Вот именно, — непреклонно подтвердил Мате. — Единственное, что я могу для вас сделать, — напомнить условия задач. Итак, слушайте. Задача вторая. В равносторонний треугольник надо вписать квадрат, одна сторона которого лежит на основании треугольника. Произвести это следует так, чтобы квадрат вместе с образовавшимся над ним малым треугольником составлял равносторонний пятиугольник.
Фило мрачно задумался. Через некоторое время, однако, лицо его прояснилось. Он взял у Мате блокнот, вычертил равносторонний треугольник АВС и вписал в него квадрат DEFg.
— Само собой, квадрат пока что приблизительный, так же как и равносторонний пятиугольник DEBFg.
— Ну, ну, — подбадривал Мате, — дальше…
— Дальше обозначим стороны большого треугольника через а, а стороны пятиугольника через х и рассмотрим прямоугольный треугольник AED. Гипотенуза его АЕ = а — х. Катет ED = x, а катет AD = a — x/2. Так ведь?
— Клянусь решетом Эратосфена, так!
— Тогда остается применить теорему Пифагора:
А уж отсюда получим выражение
После этого Фило запнулся и посмотрел на Мате так жалобно, что сердце у того не выдержало, и вскоре перед ними красовалось следующее квадратное уравнение:
Решив его, они определили, что
и откинулись от стола, весьма удовлетворенные своей деятельностью.
— Ну, — ехидно полюбопытствовал Мате, — что же вы не спросите, почему перед корнем вместо двух знаков только один?
Фило гордо подбоченился: стоит ли спрашивать о том, что и так ясно? Ведь сторона квадрата не может быть отрицательной! Стало быть, минус ни при чем.
Далее он подсчитал, что √12 приближенно равен 3,46, а раз так, значит,
— Всё! Переходим к третьей задаче.
— Надо ли? — усомнился Мате. — Думаю, вы отлично справитесь с ней дома.
И он протянул товарищу листок, на котором было написано:
«В равнобедренный треугольник с основанием 12 и боковыми сторонами 10 вписать равносторонний пятиугольник, один из углов которого — угол при вершине, а одна из сторон лежит на основании треугольника».