— Смотрите-ка, снова числа Фибоначчи!
Но Мате объяснил, что иначе и быть не могло: ведь каждое число Фибоначчи есть разность между двумя соседними числами ряда. Составив тем же способом следующие строки, он продолжил таблицу и получил числовой треугольник:
— Вы, конечно, понимаете, — добавил Мате, — что треугольник может быть продолжен до бесконечности. Так вот, я заметил, что, путешествуя по наклонным рядам этого треугольника, начиная с единицы, можно совершать самые разнообразные зигзаги и каждый раз получать полный ряд чисел Фибоначчи.
Он снова обратился к чертежу и наметил несколько маршрутов по треугольнику.
— А знаете, это и впрямь чертовски занимательно, — признался Фило.
— Погодите, я еще не кончил, — остановил его Мате. — Повернем тот же треугольник по ходу часовой стрелки градусов этак на сорок, заодно увеличив его на несколько строк, а потом сложим числа каждой горизонтальной строки.
Он выписал треугольник, поставив на уровне каждой строки сумму ее чисел:
— Во-первых, заметьте, что вдоль левой боковой стороны этого числового треугольника расположены последовательные числа Фибоначчи, — сказал он.
— Вижу, — подтвердил Фило. — А во-вторых?
— Во-вторых, исследуя полученные суммы, я увидел, что каждую из них можно в свою очередь представить в виде суммы ряда простых чисел. Для порядка начнем с единицы — ведь она как-никак тоже число простое.
1 = 1 (1 слагаемое)
3 = 3 (1 слагаемое)
10 = 3 + 7 (2 слагаемых)
29 = 3 + 7 + 19 (3 слагаемых)
81 = 3 + 7 + 19 + 23 + 29 (5 слагаемых)
220 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 71 (8 слагаемых)
589 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 (13 слагаемых)
1563 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 + 101 + 103 + 107 + 109 + 113 + 131 + 137 + 173 (21 слагаемое)
— Чуете? — спросил Мате, закончив таблицу. — Количество простых чисел, входящих в каждую сумму, тоже образует ряд Фибоначчи.
— Но это же замечательное открытие! — бурно обрадовался Фило.
— До открытия далеко. Я исследовал только восемь строк треугольника, а их бесконечное множество.
— Так найдите общее доказательство.
— Только и всего? Попробуйте-ка сами.
— Э, нет, слуга покорный! Предоставим это мессеру Леонардо, — отшутился Фило. — К тому же вы все еще не ответили на мой вопрос.
— Наоборот! Я только и делаю, что отвечаю на него. Я показал вам, как перспективна игра с числами вообще и с числами Фибоначчи в частности. Она буквально нафарширована непредвиденными находками, которые могут привести к самым неожиданным практическим результатам. Вот почему я так высоко ставлю этот удивительный числовой ряд. А теперь…
Он сунул руку в карман, позвякал медяшками и без всякого видимого перехода предложил отгадать, сколько там монет.
Фило надулся: факир он, что ли?
— Ладно! — смилостивился Мате. — Я не заставлю вас гадать ни на картах, ни на кофейной гуще. Вот вам наводящие данные. Здесь у меня трех- и пятикопеечные монеты на сумму 49 копеек.
— Так бы сразу и сказали. Теперь я, по крайней мере, понимаю, что должен составить уравнение, и притом весьма простое. Обозначим число пятачков через х, а число трехкопеечных монет — через y. Тогда пятикопеечных монет будет на сумму 5x, а трехкопеечных — на Зу. Общая сумма их, как известно, 49 копеек. Следовательно, 5x + 3y = 49.
— Ставлю вам пять с плюсом, — сказал Мате. — Уравнение отличное. Но как вы его решите?
Фило призадумался. Попробуйте-ка решить уравнение с двумя неизвестными!
— Не беда, — утешил Мате. — Мы ведь с вами знаем, что число монет каждого достоинства может быть только целым, а не дробным. Так давайте подберем эти числа. Начнем, естественно, с самого маленького целого числа: с единицы. Иначе говоря, предположим, что пятачок у меня всего один. Пишем: x = 1. Теперь подставим это в наше уравнение: 5 × 1 +3y = 49. Отсюда Зу = 44/3.
— Простите, 44/3 не целое число…
— Прекрасно. Значит, наше предположение отпадает. Теперь допустим, что х = 2. Тогда 5 × 2 + 3y = 49. Отсюда 3y = 39, у = 13. Получается, что у меня два пятака и тринадцать трехкопеечных монет.
— Браво! — ликовал Фило. — Задача решена.
— Экий вы быстрый! А ну как есть другое решение? А вдруг у меня не два, а пять пятачков? Возможно это или невозможно?
— Сейчас узнаем. 5 × 5 + 3y = 49. Отсюда Зу = 24, у = 8. Вот так компот! Выходит, у задачи не одно решение.
— Как видите.
— Поискать, что ли, другие?
Перебрав варианты х = 3, 4, 6 и 7, Фило убедился, что ни один из них невозможен. Зато при х = 8 игрек оказался равным 3. Таким образом к прежним двум решениям прибавилось третье. Однако вариант х = 9 опять не подошел. Фило хотел уже приравнять икс десяти, но Мате, смеясь, остановил его: ведь в этом случае одних пятачков было бы на 50 копеек, а у него всего 49.
— Итак, — подытожил он, — мы выяснили, что уравнение имеет три решения: 1) х = 2, y = 13; 2) x = 5, у = 8, 3) х = 8, у = 3. Следовательно, в кармане у меня либо 15, либо 13, либо 11 монет.
Фило неодобрительно поджал губы. Ну и точность! Тут уж бабушка не надвое, а натрое гадала.
— Потому-то уравнения такого рода и называются неопределенными, — разъяснил Мате. — Кроме того, наше уравнение отличается от других неопределенных еще и тем, что по условию ответ его должен быть обязательно в целых числах.
— Но кому же это нужны уравнения с несколькими ответами?
— Не скажите. Неопределенные уравнения интересовали математиков с глубокой древности. Ими занимались еще в Древней Индии. Но особенно подробно изучал их грек Диофант. Он рассмотрел многие неопределенные уравнения вплоть до четвертой степени и нашел для каждого все возможные решения в целых числах. Потому-то уравнения такого рода стали называть диофантовыми, хотя общего метода решения их Диофант не обнаружил.
— И все-таки. Для чего нужны такие уравнения? Где они используются?
— Везде. В любой науке, в любой отрасли народного хозяйства, где мы имеем дело только с целыми числами. Может ли фабрика выпустить не целое число шляп, скажем, 245 с четвертью? Можно ли запустить в космос полтора спутника? Бывает ли в табуне не целое число лошадей? Разумеется, нет. Таких задач, которые должны быть решены только в целых числах, великое множество. Понимаете теперь, какое важное место в нашей жизни занимают диофантовы уравнения?
— Понимаю, — сдался Фило. — Но вам не кажется, что мы слишком отдалились от темы? Говорили о числах Фибоначчи, потом ни с того ни с сего перескочили на диофантовы уравнения…
— Это вы называете «ни с того ни с сего»? Да ведь между ними прямая связь! Да будет вам известно, что десятая проблема Гильберта, решенная посредством чисел Фибоначчи, касается именно диофантовых уравнений. Гильберт спрашивает, каким способом можно установить после конечного числа операций, разрешимо ли данное диофантово уравнение в целых числах. И оказалось, что такого способа в общем виде не существует.
— Ууу! — разочарованно протянул Фило. — Стало быть, десятая проблема Гильберта оказалась совершенно бесполезной?
Мате сердито замахал руками. Что за чепуха! Во-первых, математический метод, которым была исследована десятая проблема, представляет огромную ценность уже сам по себе. Во-вторых, результат этого исследования избавил ученых от дальнейших поисков. И наконец, в-третьих, — десятая проблема Гильберта привела к возникновению новой ветви математики — теории алгоритмов. А это такое…
Он не договорил — его прервал взволнованный голос Фило:
— Мате, Мате! Взгляните на результат нашего уравнения! Два, три, пять, восемь, тринадцать… Это же числа Фибоначчи!
Мате оторопел. Что за чудеса! Как он сразу не заметил? Впрочем… впрочем, может быть, это случайное совпадение? Попробовать разве проверить, какие решения получаются при других суммах. Вот хоть для четырнадцати копеек.
Он быстро перебрал все возможные варианты и нашел, что это уравнение имеет всего-навсего одно решение: х = 1, y = 3.
— Снова числа Фибоначчи! — определил Фило. — Возьмем еще какую-нибудь сумму. Двадцать одну копейку.
На этот раз тоже получилось одно решение, и опять-таки в числах Фибоначчи: х = 3, у = 2.
Мате испытующе покосился на друга.
— Ну, — сказал он насмешливо, — почему вы не кричите, что мы с вами сделали великое открытие?
Фило погрозил ему пальцем. Теперь он стреляный воробей — знает, что три частных случая ни о чем еще не говорят.
— А что будем делать с поисками общей закономерности? — снова съехидничал Мате. — Опять спихнем на мессера Леонардо?
— Хорошо бы. Но может быть, займемся сами? Переберем не три, а три тысячи три варианта, а потом возьмем да выведем какую-нибудь сногсшибательную формулу…
Мате с азартом шлепнул себя по колену.
— Идет!
Но тут он услыхал угрожающее рычание Буля: неужто еще один ферманьяк пожаловал? Так и есть — звонят! Он вздохнул и отправился разъяснять очередную ошибку.
Часть IIIВЕЛИКИЙ ТРЕУГОЛЬНИК
В заброшенной мансарде
Тысяча шестьсот шестьдесят… Впрочем, к чему излишняя точность в повествовании столь фантастическом? Начнем лучше так: вторая половина семнадцатого столетия. Весенний день близок к концу. Заходящее солнце освещает островерхие кровли Парижа, заставляя жарко вспыхивать побуревшую черепицу.
Солнце делает свое дело. Лучи его с тем же ласковым равнодушием заглядывают и в зеркальные стекла богатых особняков, и в убогие оконца мансард, где ютятся бедные цветочницы и голодные поэты…
Последуем за солнцем и тоже заглянем в одну такую пыльную чердачную каморку со скошенным, затянутым паутиной потолком. Заглянем — и удивимся: каким ветром занесло сюда двух этих щеголей? Что им тут надо?