Искатели необычайных автографов — страница 57 из 62

— Ничего особенного, мсье. Не все мне ходить в красавцах, надо побыть и самим собой. Впрочем, если вид мой вам неприятен, я могу и уйти…

— Попробуйте только! — вскидывается Фило. — В конце концов, что нам до вашего вида? Довольно и того, что вы — это вы!

Большеротая мордочка Асмодея блаженно расплывается. Он лукаво подмигивает. То-то! Полюбите нас черненькими, а беленькими нас всякий полюбит.

— Постойте-ка, — соображает Мате, — вы что же, всегда здесь живете?

— Ну, конечно, мсье, — говорит черт, поглаживая Буля и поглядывая то на одно, то на другое свое плечо, где, подобно двум египетским сфинксам, восседают Пенелопа и Клеопатра. — С тех самых пор, как мсье Фило приобрел книгу Лесажа.

— Значит, вы слушаете все наши разговоры?!

— Что за вопрос, мсье! Я не глухой. Уж не думаете ли вы, что мое появление на чердаке в Париже — случайность? Как бы не так. В то время как вы только еще обсуждали план вашей экспедиции, я уже обдумывал план своего представления. Да, именно тогда, на этой самой полке, я решил осуществить мою сокровенную мечту и стать режиссером. Ах, мсье, я так люблю театр! Я брежу им вот уже несколько тысячелетий. Но никогда мне не удавалось войти в него со служебного входа. Вот почему время моей работы над спектаклем навсегда останется для меня лучшим воспоминанием в жизни.

— А не выпить ли нам по этому поводу свежезаваренного чая? — вдохновенно предлагает Фило и, не дожидаясь ответа, удаляется на кухню вместе со своими чайниками.


По следам руанских впечатлений


— Хорошо! — разнеженно вздыхает Фило, влюбленно созерцая Асмодея, который шумно лакает чай из старинной чашки в форме лилии. — Налить вам еще?

— Не откажусь, мсье. Такой чай! Да еще из такой чашки…

— Вам она нравится?

— Очень, мсье. Особенно рисунки в стиле Ватто́[49].

Фило и Мате знают эти рисунки наизусть (на одном из них кукольно улыбающаяся пастушка надевает ленточку на шею ягненку; на другом столь же кукольно улыбающийся пастушок надевает колечко на палец все той же пастушке). Но похвала Асмодея заставляет их все же взглянуть на тот рисунок, который приходится каждому перед глазами. И тут они замечают, что изображена на нем совсем другая, хоть и знакомая сцена: юноша с разметавшимися волосами лежит на высоко взбитых подушках. Миловидная девушка кладет ему салфетку на лоб.

— Что это, Асмодей?

— Ничего особенного, мсье. Надо же мне как-то призвать вас к делу.

И разговор снова возвращается к эпизоду «Арифметическая машина». Мате сожалеет, что самой машины так и не видал. Ну да ничего не поделаешь! Ведь во время их пребывания в Руане она не была еще готова. К тому же сейчас, в двадцатом столетии, изобретение это представляет интерес чисто исторический…

— До известной степени, мсье, — возражает бес. — Творец кибернетики Но́рберт Ви́нер справедливо отмечает, что машина Паскаля имеет прямое отношение к настольным арифмометрам современного образца. Ведь в основу ее положен часовой механизм, а часовые механизмы используются в ручных арифмометрах и поныне.

Асмодей запихивает в рот громадный кусок яблочного пирога и, мигом разделавшись с ним, продолжает:

— Между прочим, то, что Паскаль прибег к зубчатой передаче, едва ли не самое главное его достижение. Тем самым поступательное движение, которое используется в счетах, он заменил вращательным. Притом так, что перенос десятков в следующий разряд происходит автоматически. Когда в числовом разряде накапливается десять единиц, они с помощью специального рычажка заменяются нулем, а к цифре следующего разряда прибавляется единица. Принцип этот сохраняется не только в арифмометрах, но и во многих измерительных приборах. В счетчиках такси, в электросчетчиках…

— Представляю себе, как обрадовались счетной машине бухгалтеры семнадцатого века! — фантазирует Фило.

— Кха, кха… Не думаю, чтобы очень, мсье. К сожалению, она была им не по карману. Да и в работе сложновата. К тому же частенько портилась. Тогда ведь не умели уменьшать трение. Отсюда вечные заедания, зацепки…

— Хоть бы и так, — хорохорится Фило, — а все-таки четыре действия арифметики с плеч долой!

— Только два, мсье. Сложение и вычитание. Арифмометр Паскаля — прародитель сумматорных машин. Зато уже два-три десятилетия спустя появилась сумматорно-множительная машина Лейбница.

— Последователь, стало быть, не заставил себя ждать.

— Не последователь, а последователи, — снова поправляет бес. — Даже в семнадцатом веке их было уже несколько. Само собой, охотники погреть руки на чужом изобретении — не в счет. Паскаля оградила от них королевская привилегия, а еще — их собственное невежество: изготовление мало-мальски сносной подделки требовало сноровки и знаний, каких у них не было. Ну да что о них толковать! Мы ведь говорим о связи машины Паскаля с современностью.

— Как? Разве разговор не закончен? — удивляется Мате.

— Нет, мсье, мы как раз подошли к самому главному. А это — отнюдь не устройство машины. Главное — идея. Паскаль, если помните, руководствовался утверждением Декарта, полагавшего, что мозгу человеческому свойствен некий автоматизм и что многие умственные процессы, по сути дела, ничем не отличаются от механических. Иными словами, мозг столько же автомат, сколько живой орган. Работа над машиной заставила Паскаля не только утвердиться в этой мысли, но и углубить ее. Он понял, что действия арифметической машины даже ближе к мыслительному процессу, нежели то, на что способен живой мозг…

— Что?! — взвивается Мате. — У Паскаля есть такая запись? Но ведь это же одно из положений кибернетики!

— В том-то и дело, мсье. И значит, у нас с вами есть все основания считать Паскаля ее прародителем, что совершенно необходимо отметить еще одной чашкой чая.

Хозяин, улыбаясь, принимает у черта пустую чашку. Но что это? Рисунок на ней опять изменился. Теперь там изображены они сами — Фило, Мате и Асмодей на крыше руанской судебной палаты.

Улыбка медленно сползает с круглой физиономии Фило. Неужели его заставят копаться в теореме Дезарга? К счастью, эта неприятная для него операция переносится на другое время. Зато разговор о своей собственной теореме Мате откладывать не намерен. И многострадальный филолог покоряется своей участи.

— Итак, — говорит Мате, — напоминаю суть теоремы. Если на сторонах произвольного треугольника построить снаружи или внутри (значения не имеет) по равностороннему треугольнику и соединить прямыми их центры тяжести, то полученный таким образом новый треугольник тоже будет равносторонним.

— Насколько я понимаю, именно это и нуждается в доказательстве, — капризно замечает Фило.

— Совершенно верно. Так вот, вспомните чертеж, который я наспех набросал там, в Руане, на крыше. Впрочем, сейчас я его уточню… Вот, пожалуйста. Попытайтесь разобраться.



— Исключено. — вздыхает Фило.

— Позвольте, мсье, — вмешивается Асмодей. — Как видите, треугольник ОАВ совершенно произвольный, и на каждой его стороне построено по равностороннему треугольнику: ОСА, ADB и ОВЕ. Центры тяжести этих равносторонних треугольников обозначены буквами т, п и р, а из них, как из центров, проведены дуги ОkА, АkВ и ВkО — каждая в 120°. Се си? Так?

— Недурно, — говорит Мате. — Но вы не заметили самого примечательного: все три дуги пересеклись в общей точке k. Удивительная точка.

— Не хуже и не лучше других, — ехидничает Фило.

— Это как для кого, — отбивает удар Мате. — Немецкий математик Ште́йнер полагал иначе. Он доказал, что подобная точка находится в таком месте треугольника, из которого каждая сторона видна под одним и тем же углом — 120°.

— Что значит «видна под углом»? — сейчас же придирается Фило.

— Ну, это просто, мсье, — отзывается Асмодей. — Так математики называют угол между двумя лучами, проведенными из заданной точки через концы отрезка. И стало быть, в данном случае, как я понимаю, речь идет об углах ОkА, АkВ и ВkО. Каждый из них равен 120°. Я понятно изъясняюсь?

— Допустим, — уклончиво бурчит Фило. — Но что из этого следует?

— Только то, — поясняет Мате, — что сумма расстояний от точки k до вершин треугольников ОАВ — то есть  + kА + kВ — есть наименьшая из всех возможных для всякого треугольника, который не имеет угла, превышающего 120°… А теперь, чтобы двинуться дальше, необходимо провести несколько дополнительных отрезков. Во избежание путаницы сделаю новый чертеж, убрав всё лишнее. А вы глядите в оба — я хочу сказать, в оба чертежа.

Мате быстро набрасывает новый треугольник, обозначив его теми же буквами, что и на предыдущем. Затем соединяет вершины двух треугольников пунктиром и отмечает конгруэнтные стороны (Оm и ОА, Ап и пВ, Вр и рО) одной, двумя и тремя черточками.



— Ну-с, — торжественно произносит он, полюбовавшись своей работой, — теперь перегнем треугольники тАп, пВр и рОт по их непунктирным сторонам. Как вы думаете, где окажутся вершины А, В и О?

— В точке k, мсье, — сейчас же выскакивает Асмодей.

— Отлично! — говорит Мате. — Но что из этого следует?

— В самом деле, что? — хмыкает Фило.

— Да то, что площадь многоугольника ОтАпВрО ровно вдвое больше треугольника тпр, — отвечает Мате. — Остается самое главное. Надеюсь, не надо разъяснять, что отрезок пт есть биссектриса угла Апk, а пр — биссектриса угла kпВ. Это очевидно, так как пт перпендикулярно Аk, а треугольник Апк — равнобедренный. Точно так же: Вk перпендикулярно пр, и треугольник kпВ тоже равнобедренный.

— Но ведь отсюда вытекает, что углы Апт и Впр в сумме равны углу mnp! — взволнованно восклицает Асмодей. — А так как угол АпВ равен 120°, то…

— …угол